
Unified Representation for XR Content and its Rendering
Method

Yongjae Lee
Korea Institute of Science and

Technology
Seoul, Korea

Department of Mechanical
Engineering, Yonsei University

Seoul, Korea
yongjae.lee@kist.re.kr

Changhyun Moon
Korea Institute of Science and

Technology
Seoul, Korea

ckdgus2482@kist.re.kr

Heedong Ko
Korea Institute of Science and

Technology
Seoul, Korea
ko@kist.re.kr

Soo-Hong Lee
Department of Mechanical

Engineering, Yonsei University
Seoul, Korea

shlee@yonsei.ac.kr

Byounghyun Yoo
Korea Institute of Science and

Technology
Seoul, Korea
yoo@byoo.net

!"#$%&%'(")*"+,$-'$- *'$('.'("%$"!**'$('.'("%$"/*

!"#

!$#

!%#

!&#

!'#
!$#

!%#

!&#

!'#

Figure 1: A unified XR content representation (middle) and its rendered results in VR (left) and AR (right). (1) is a virtual object
group, which is represented by a wxr-group tag in the code, containing three virtual objects ((3), (4), and (5)). (2) is an ar-target
attribute, which makes the wxr-group element work as an AR anchor as well, and its value is a URL that indicates the feature
data. The feature data is a string image of ‘3624-5P’ and is attached to the surface of the real handle (right). (3), (4), and (5) are
virtual objects of the handle, curved arrow, and annotation, respectively. These virtual objects are rendered normally in VR
(left) and augmented in AR (right).

ABSTRACT
Virtual Reality (VR) and Augmented Reality (AR) have become fa-
miliar technologies with related markets growing rapidly every
year. Moreover, the idea of considering VR and AR as one eXtended
reality (XR) has broken the border between virtual space and real
space. However, there is no formal way to create such XR content
except through existing VR or AR content development platforms.
These platforms require the content author to perform additional

Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8169-7/20/11.
https://doi.org/10.1145/3424616.3424695

tasks such as duplicating content for a specific user interaction en-
vironment (VR or AR) and associating them as one. Also, describing
the content in an existing markup language (e.g., X3D, X3DOM,
A-frame) has limitations of that the content author should prede-
fine the user interaction environment (i.e., either of VR and AR). In
this study, a unified XR representation is defined for describing XR
content, and the method to render it has been proposed. The unified
XR representation extends the HTML so that content authored with
this representation can be harmoniously incorporated into existing
web documents and can exploit resources on the World Wide Web.
The XR renderer, which draws XR content on the screen, follows
different procedures for both VR and AR situations. Consequently,
the XR content works in both user interaction environment (VR and
AR). Hence, this study provides a straightforward XR content au-
thoring method that users access anywhere through a web browser

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 
International 4.0 License.

https://doi.org/10.1145/3424616.3424695
https://creativecommons.org/licenses/by-nc-nd/4.0/


Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Yongjae Lee, Changhyun Moon, Heedong Ko, Soo-Hong Lee, and Byounghyun Yoo

regardless of their situational contexts, such as VR or AR. It facili-
tates XR collaboration with real objects by providing both VR and
AR users with accessing an identical content.

CCS CONCEPTS
• Human-centered computing → Collaborative and social com-
puting systems and tools; Mixed / augmented reality; Virtual
reality; Web-based interaction.

KEYWORDS
Extended Reality, XR, Unified Representation, Virtual Reality, Aug-
mented Reality, Collaboration, Content

ACM Reference Format:
Yongjae Lee, ChanghyunMoon, HeedongKo, Soo-Hong Lee, and Byounghyun
Yoo. 2020. Unified Representation for XR Content and its Rendering Method.
In The 25th International Conference on 3D Web Technology (Web3D ’20),
November 9–13, 2020, Virtual Event, Republic of Korea. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3424616.3424695

1 INTRODUCTION
The spread of COVID-19 around the world since early 2020 has
brought many changes. People had to learn how to distance them-
selves from their daily lives. Many meetings and social gatherings
that were traditionally held face-to-face have turned into virtual
meetings. Thus, the demand for video conferencing, VR meetings,
and remote AR collaboration services has increased. In particular,
VR technology, which can utilize various intuitive audio-visual
materials, is receiving much attention as it can provide a richer
experience compared to video conferencing. VR Chat [VRChat Inc.
2017], which offers an endless collection of social VR experiences
has been steadily gaining popularity with over 25, 000 communities
created since its launch in 2017. Many academic events, including
IEEE VR 2020 [IEEE 2020], have been held through VR.

While VR enriches the teleconferencing experience, it has certain
limitations; for example, it only deals with virtual objects. Therefore,
it is difficult for the user to recognize the status of objects that exist
in real space. Due to this limitation, remote collaborations use AR
technology to carry out work that requires real space. Applications
such as Vuforia Chalk [PTC Inc. 2017] or Scope AR[Scope Technolo-
gies US Inc. 2018] help collaborators to deliver work instructions
remotely by augmenting simple 3D models, such as drawings and
arrows on the live video, while workers at the site share their
situation over the video via camera-attached devices such as smart-
phones or AR glasses. However, there is a limit to the ability of
remote collaborators to navigate the remote scene actively.

Recently, there is an emergence of the concept of eXtended
Reality (XR) or X-Reality [Mann et al. 2018]. This eliminates the
distinction between VR and AR and integrates them into a single
concept. Studies before the advent of XR considered VR and AR
content separately, whereas the concept of XR suggested that both
VR and AR could be aggregated into one, by which users could
access the content regardless of their interaction environment.

Many VR/AR/XR collaboration methods have been studied in the
multi-disciplinary area as well [Huh et al. 2019; Lee et al. 2017, 2019;
Poppe et al. 2012; Shen et al. 2010]. They proposed idiosyncratic

collaborative systems for their scenario. To integrate their devel-
opment beyond XR, they should share consensus of a task, then
create the content following the scenario on their implementation
bases. In other words, integrating them is not accessible due to the
absence of a definition for their content. This problem can be solved
if there is only one XR content representation on one platform, and
if it is properly interpreted and rendered in any user interaction
environment across VR and AR. Since the Web has one standard
specification, it provides the same user experience in all environ-
ments. It can be accessed through a web browser that is already
implemented in most devices; hence, it can be stated that the Web
is the most appropriate platform for expressing XR content.

Collaboration in XR is featured by allowing users to access col-
laborative spaces in their user interaction environment, regardless
of access to other users’ interaction environments. However, col-
laboration in XR requires duplicated content that responds to each
different user interaction environment. Therefore, code redundancy
is a crucial problem making it difficult for the content author to
maintain consistent content between different user interaction en-
vironments. It also creates storage space waste along with other
costs.

In this paper, a unified XR content representation is defined
and interpreted as VR or AR content, thereby solving the code
redundancy problem. This representation extends the HTML, the
markup language. It enables content authors to learn XR content
authoring easily and express XR content to not depend on specific
applications. Because it is HTML-based, it can be read and parsed
usually by a web browser engine, and the hierarchy of the content
source-block parsed into the document object model (DOM) can
be exploited as a scene graph of XR content. Therefore, the code
parser does not need to be written, and it has the advantage of
accepting the vast content resources of the Web. Moreover, this
nature of non-code-duplication and web-friendliness is preferable
for Web 3.0, a decentralized web, and it will ensure that Peer to
Peer (P2P) based XR collaboration is viable [Huh et al. 2019].

In Section 2, we discuss related work, including traditional meth-
ods for describing VR and AR content. Section 3 explains problems
in making XR content with traditional strategies and details our
approach that defines the definition and grammar of the unified
XR representation with simple examples. In Section 4, an imple-
mentation of the proposed approach is presented. Finally, Section 5
concludes our research with a brief outline of future work.

2 RELATEDWORK
In AR technology, one imperative element is to track informa-
tion about the real world and the objects of interest [Carmigni-
ani et al. 2011; Ibáñez and Delgado-Kloos 2018]. In general, there
are two types of information tracking: location-based and image-
based [Ibáñez and Delgado-Kloos 2018]. The former identifies the
location where are the device is and the objects in the real world,
using navigation systems (e.g., GPS, Beacon). The latter identifies
objects using computer vision techniques (e.g., pattern recognition,
SLAM), this is more desirable due to remarkable advancements in
Artificial Intelligence (AI).

Many software development kits (SDKs) facilitating the approaches
mentioned above have been developed and improved [Apple Inc.

https://doi.org/10.1145/3424616.3424695


Unified Representation for XR Content and its Rendering Method Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea

2017; Google Inc. 2018; I Love IceCream Ltd. 2020; MAXST Ltd.
2017; PTC Inc. 2011; VisionStar Information Technology Ltd. 2015;
Wikitude GmbH 2008]. ARCore [Google Inc. 2018] and ARKit [Ap-
ple Inc. 2017], developed by the two major mobile operating sys-
tem vendors, Google and Apple, respectively, are implemented as
native code and show excellent performance. However, they re-
quire burdensome work for utilization on the Web, due to lack of
support from the web browser. Instead, Apple introduced a 3D
model format called USDZ and an AR Quick Look extension, so
that some functions of ARKit can be accessed in Safari [Apple Inc.
2019]. However, it remains inadaptable for collaboration-related
work with real-world objects, as it is unable to recognize them.
The ARToolKit [Kato and Billinghurst 1999], which is a famous AR
project that has been ported and widely used in many languages,
provides a pure web-based AR experience with the integration of
A-Frame [Diego Marcos et al. 2015], a web-based VR framework.
8th Wall [8th Wall Inc. 2018] is another purely web-based AR en-
gine that does not require supplementary installation, to witness
the AR experience on the Web.

Unreal [Epic Games Inc. 1998] and Unity [Unity Technologies
2005] are currently the most widely used VR/AR content develop-
ment platforms. Originally, they were intended to create VR content,
but as AR games, including Pokémon Go, became prominent in
the market, they also began to support AR content development
and established an ecosystem of AR content with AR-supported
devices, such as smartphones and Microsoft HoloLens. However,
a crucial drawback is that these content development platforms
do not support AR content building for the Web. Consequently,
the developers must build the project separately for each target
platform they intend to deploy. Amazon Sumerian [Amazon Web
Services Inc. 2018], which is designed as a web-based VR/AR con-
tent development platform, provides everything from creation to
deployment of content on the Web. Unlike Unreal or Unity, it is
intended exclusively for the Web. Although VR/AR content devel-
opment platforms help the content developer to implement a design
with a quick and easy procedure, a key challenge that remains is
creating VR-AR interoperable content.

The most recent VR/AR collaboration service is Spatial [Spatial
Systems Inc. 2018]. Spatial provides a virtual workspace that can
be accessed by any VR or AR devices. Users can collaborate on
this virtual workspace, giving presentations, reviewing 3D models,
exchanging documents, and so on. However, this collaboration has
been limited to virtual objects and does not focus on real-world
objects.

Some studies have emerged describing VR or AR content as
human-readable representations. In general, these studies express
VR or AR content based on markup language, which is charac-
terized by a schema that is readable and modifiable by humans
and is intelligible to computers. However, their content represen-
tation schema was designed only for specific VR or AR domains,
so additional tasks are required to use in the other user interaction
environment. In other words, VR content representation cannot be
consumed as AR without any additional modification of content,
or vice versa, through their methods. X3D [Web3D Consortium
2001] is a markup language that describes VR content, being created
by the Web3D Consortium. X3D succeeds VRML, and its specifi-
cation version 4.0 is currently being issued. X3DOM [Behr et al.

2009, 2011; Fraunhofer Society 2009] is a library implemented for
embedding X3D representation into HTML documents. X3D is de-
fined based on XML, so it is simple to learn and VR content can
be written and used through rendering engines that support X3D.
Unlike X3D, which uses markup language only to express the con-
tent, XML3D [Jankowski et al. 2013; Sons et al. 2010; Sutter et al.
2015] introduces CSS to separate the structure and style of the
content. In X3D, the relationship between each virtual object that
constitutes the content appears as a hierarchical structure of the
document, and the properties of the virtual object are expressed as
an attribute of the tag. XML3D considers the relationships between
virtual objects and those properties as separable and makes those
properties, such as transformations and textures, to be definable
by CSS. As a result, XML3D increased the reuse of code by dis-
tinguishing between the structure and style of VR content, in the
same manner normally achieved by web documents. Depending on
the philosophy of expressing VR content using a markup language,
such as X3D, A-Frame [Diego Marcos et al. 2015] applied the design
pattern of the Entity-Component System to help content creators
easily extend and use its functions. These previous studies have
increased efficiency and utility in describing VR content; however,
an important limitation is that they cannot be utilized in AR, as
only VR situations have been considered.

ARML [Open Geospatial Consortium 2010] is a markup lan-
guage defined by the Open Geospatial Consortium (OGC), which
defines standards for data and services related to global space and
is designed to express AR content. It is XML-based, like X3D; and
describes GIS information, models to augment, and relative posi-
tions of anchor-to-anchor or anchor-to-user. KARML [Georgia Tech
2011] is an AR content-authoring language that extends KML for
geographic annotation and visualization. Both ARML and KARML
specify a location in the real world to augment virtual objects
through geographic coordinates and are difficult to use in applica-
tions that do not utilize geographic information [Kim et al. 2011]. In
order to overcome this limitation, data markup representation for
mixed reality content [Kim et al. 2011] is proposed. It describes the
real-world object and the virtual object according to 4H1W and en-
deavors to define the relationship between them. These attempts to
express AR content may be used extensively and efficiently within
the category of AR, but they are not suitable for describing VR
content.

3 METHODOLOGY
The traditional development strategy of VR/AR content does not
consider usage in another user interaction environment; content
can only be used in the intended user interaction environment at the
time of development. There are two main problems if the content is
to be used in a different environment than its native one. The first
problem is that virtual objects that will be augmented in AR will not
be rendered in VR. For example, to create AR content in Amazon
Sumerian, the following steps take place. The first step is to define
‘ARAnchor’, to reflect tracking information on the real-world object
of the augmented target, and the second step is to insert the virtual
object to be augmented into a child of ‘ARAnchor’ in the scene
hierarchy (Figure 2). Thereby, the AR engine augments the virtual
object when it recognizes the real-world object corresponding to



Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Yongjae Lee, Changhyun Moon, Heedong Ko, Soo-Hong Lee, and Byounghyun Yoo

!"#$%&'&(&)&*+$&'$,-,.

!/#$0,/().$1)/+&,2$

"-,*.,*$&,$34

!(#$0,/().$1)/+&,2$

"-,*.,*$&,$%4

Figure 2: Scene hierarchy authored for AR content in Ama-
zon Sumerian. The AR Camera node enables this content to
be played in AR (a), and the VRCameraRig node enables it
to be played in VR (b). The ARAnchor node is initially set
as invisible to be disappeared until the real-world object is
tracked (c).

‘ARAnchor’, or it does not render the virtual object. On the other
hand, if this AR content is used in VR, the virtual objects intended
for augmentation will never be rendered because there is no event
recognizing the real-world objects in VR (Figure 3). The second
problem of cross-environment rendering is that the background in
VR also appears in AR and masks the video frame. For VR content,
it is common to add a background in the form of a sphere or cube to
enhance the sense of reality. When VR content with a background is
used in AR, the background will always be rendered upon the video
frame, making it impossible to see the video that shows the real
world (Figure 4). Not only background but also a virtual object in VR
content should not be rendered in AR whenever the corresponding
real object, which the virtual object is mirrored from, exists in AR.
These problems stem from a fundamental design that only takes
into account a single interaction environment, either VR or AR, but
fails to take a unified XR approach.

We need to interpret XR content as both VR and AR because
it is unknown in advance which environment will be used. This
paper proposes the XR representation and rendering method that
can be used to interpret the environment of VR and AR with one
XR content code. XR representation defines a basic element, wxr-
element, by extending HTML’s basic element, HTMLElement,
and defines subclasses inheriting wxr-element for authoring XR
content, as shown in Table 1 (Note that the level of hierarchy means
the depth of inheritance.). Because XR representation has extended
HTML, we can embed it in general web documents without errors
and can parse into DOM by a browser engine. XR representation
converted to DOM can be used as the scene tree of the XR scene,
as it is in the DOM Tree structure, and the DOM event can be
generated and processed using the DOM event handler. The user
can also easily access content resources from other sites through
the Web.

XR primitives (such as wxr-world, wxr-space, wxr-camera,
etc.) inheriting wxr-element as root can be used to create XR
content. With limited primitive types defined herein, the content

!"#$%&$'()*+)*

%&$'()*+)*$

,-$.-+/$,)$0&

!1#$234+'*+/$5+-.6* !'#$&+"6$5+-.6*

!,)$%7"8()$9.7+5,")#

Figure 3: The problem when AR content is used in VR. (a)
is the result when AR content (Figure 2) runs in AR. The
drone model is augmented above the drone image. (b) is the
expected result when the same content without any modi-
fication runs in VR. Note that the virtual object under the
ARAnchor in the scene hierarchy is never rendered due to
no real-world object tracking in (c).

!"#$%&$'()*+)*

%&$'()*+)*$

,-$.-+/$,)$0&

!1#$234+'*+/$5+-.6* !'#$&+"6$5+-.6*

!,)$07"8()$9.7+5,")#

Figure 4: The problem when VR content is used in AR. (a)
is the result when VR content runs in VR. The user sur-
rounded by the background, inspects the drone model. (b)
is the expected result when the same content without any
modification runs in AR. Note that the virtual object, the
drone model, is still rendered due to the real-world object is
tracked in AR, even though the video frame is hidden by the
background image in (c).



Unified Representation for XR Content and its Rendering Method Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea

Table 1: WXR Tag Hierarchy

WXR Tag hierarchy DescriptionLevel 1 Level 2 Level 3

wxr-element

wxr-world - The root tag for XR content. This tag defines the area of XR content in the
document and initializes XR content described within this tag.

wxr-space -
The unit of XR space. This tag works as a namespace and multiple instances of
this tag can be declared in the wxr-world tag. The background attribute of this
tag refers to a URL of background image used in VR.

wxr-camera -

The XR camera. The user can navigate the virtual world controlling this virtual
camera. In AR, the extrinsic and intrinsic parameters of this are synchronized
with the physical camera on the device to serve the AR experience to the user
properly.

wxr-light

wxr-light-ambient,
wxr-light-directional,
wxr-light-spot,
wxr-light-point

The XR light. The four basic lights inheriting wxr-light are specified here: direc-
tional, ambient, spot, and point light. The user freely defines more complicated
light simulation like Rect Area light as required.

wxr-group -

The group for XR objects. This organizes several other XR objects as a single XR
object. This also works as an AR anchor if the ar-target attribute has a value. The
ar-target attribute points to the location where the information of the real-world
object is stored. The location is identified using a URL.

wxr-geometry
wxr-box,
wxr-plane,
wxr-sphere, etc.

The root tag of geometric objects. This tag contains an algorithm for collision
checking and general properties of materials like opacity, texture filter, etc. Every
geometric primitive inherits this tag. Moreover, the user can define custom tags
inheriting this as per requirement. This tag also can have an ar-target attribute.

cannot be written flexibly. However, thewxr-element has extends
HTML, allowing user-extension through subclassing of the XR
primitive, for specific purposes. Listing 1 shows how to define a
new WXRObj class with functions to import a 3D model file of
.obj extension. WXRObj inherits WXRGeometry through the
custom element interface. The registered custom element can then
be seamlessly used as a composition of XR content, with predefined
XR primitives.

Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Yongjae Lee, Changhyun Moon, Heedong Ko, Soo-Hong Lee, and Byounghyun Yoo

Figure 3: The problem when AR content is used in VR. (a)
is the result when AR content (Figure 2) runs in AR. The
drone model is augmented above the drone image. (b) is the
expected result when the same content without any modi-
fication runs in VR. Note that the virtual object under the
ARAnchor in the scene hierarchy is never rendered due to
no real-world object tracking in (c).

1 class WXRObj extends WXRGeometry {
2 constructor() {
3 super();
4 }
5
6 static get is() {
7 return "wxr-obj";
8 }
9
10 /* custom code implementation goes here... */
11 }
12
13 customElements.define(WXRObj.is, WXRObj);

Listing 1: XR Element Extension Example

can also easily access content resources from other sites through
the Web.

XR primitives (such as wxr-world, wxr-space, wxr-camera,
etc.) inheriting wxr-element as root can be used to create XR
content. With limited primitive types defined herein, the content
cannot be written flexibly. However, thewxr-element has extends
HTML, allowing user-extension through subclassing of the XR
primitive, for specific purposes. Listing 1 shows how to define a
new WXRObj class with functions to import a 3D model file of
.obj extension. WXRObj inherits WXRGeometry through the
custom element interface. The registered custom element can then
be seamlessly used as a composition of XR content, with predefined
XR primitives.

The creation of XR content is similar to creating a web document.
Just as a web document is structured through embedding HTML
tags, the XR content is structured by embedding XR primitive tags.
wxr-world is the element that acts as the root node of the XR
scene hierarchy. wxr-world performs a necessary initialization
process when used, such as creating an XR scene root node, cam-
era controllers, and registering basic input event listeners such as
mouse clicks and keyboard strokes. The XR content is organized by
combining XR primitive tags with a wxr-world tag. wxr-group

Figure 4: The problem when VR content is used in AR. (a)
is the result when VR content runs in VR. The user sur-
rounded by the background, inspects the drone model. (b)
is the expected result when the same content without any
modification runs in AR. Note that the virtual object, the
drone model, is still rendered due to the real-world object is
tracked in AR, even though the video frame is hidden by the
background image in (c).

1 <html>
2 <style>
3 .red {
4 --wxr-color: #ff0000
5 }
6 .left {
7 --wxr-transform: translate3d(-1,0,0);
8 }
9 </style>
10 <body>
11 <header>XR Content Example</header>
12 <wxr-world>
13 <wxr-camera>
14 <wxr-space background="background.png">
15 <wxr-plane class="red left"

texture="plane.png"></wxr-plane>
16 <wxr-obj obj="book.obj" mtl="book.mtl"

ar-target="book.feature"
style="--wxr-transform:translate3d(1,0,0);"></wxr-obj>

17 </wxr-space>
18 </wxr-world>
19 </body>
20 </html>

Listing 2: XR Content Example

elements play the role of a group, as inferred from the tag name,
which unite other primitives but play an even more important role
in the AR environment. The wxr-group element has an attribute
named ar-target, and it refers to the information of a target to be
augmented as a URL. The AR engine obtains information about
the target through the URL specified in the ar-target property and
tracks the real-world object based on this. When the AR engine
recognizes a real-world object through tracking, it renders a wxr-
group; otherwise, it does not render the wxr-group. Moreover,
the wxr-geometry tag and its descendants are also acceptable of
ar-target property and capable of the same function.

An example of the wxr-group tag and ar-target attribute is
shown in Figure 1. There are three XR objects (handle part of the
ball valve, a curved arrow, directing where the handle is driven, and
annotation, delineating how to disassemble the ball valve) declared
within a wxr-group tag with the ID attribute set to ‘handle_step’.
This means that the three objects are entangled and manipulated
together. Moreover, the wxr-group tag has an ar-target attribute
referring to the feature information of the ‘3624-5P’ image as a
URL. If the AR engine tracks the ‘3624-5P’ image on the handle
in the real world, the wxr-group is augmented on the surface of
the real handle based on the tracking information given by the AR
engine. In other words, the renderer draws three virtual objects
simultaneously on a real handle. If thewxr-group tag did not have
an ar-target attribute, the AR engine would not track the object,
and consequently, the three virtual objects enveloped in the wxr-
group tag are not rendered in AR. In summary, the wxr-group
element acts as a group in the VR and AR environment if there is no
ar-target property, but also acts as an ARAnchor of an augmented
target if the ar-target property exists. This is an important feature
that allows a renderer interpreting XR content to render a single
unified XR code in VR and AR environments.

Listing 2 shows an example of XR content embedded in the gen-
eral HTML code of a web document. Much like the typical web

The creation of XR content is similar to creating a web document.
Just as a web document is structured through embedding HTML
tags, the XR content is structured by embedding XR primitive tags.
wxr-world is the element that acts as the root node of the XR
scene hierarchy. wxr-world performs a necessary initialization
process when used, such as creating an XR scene root node, cam-
era controllers, and registering basic input event listeners such as
mouse clicks and keyboard strokes. The XR content is organized by
combining XR primitive tags with a wxr-world tag. wxr-group

elements play the role of a group, as inferred from the tag name,
which unite other primitives but play an even more important role
in the AR environment. The wxr-group element has an attribute
named ar-target, and it refers to the information of a target to be
augmented as a URL. The AR engine obtains information about
the target through the URL specified in the ar-target property and
tracks the real-world object based on this. When the AR engine
recognizes a real-world object through tracking, it renders a wxr-
group; otherwise, it does not render the wxr-group. Moreover,
the wxr-geometry tag and its descendants are also acceptable of
ar-target property and capable of the same function.

An example of the wxr-group tag and ar-target attribute is
shown in Figure 1. There are three XR objects (handle part of the
ball valve, a curved arrow, directing where the handle is driven, and
annotation, delineating how to disassemble the ball valve) declared
within a wxr-group tag with the ID attribute set to ‘handle_step’.
This means that the three objects are entangled and manipulated
together. Moreover, the wxr-group tag has an ar-target attribute
referring to the feature information of the ‘3624-5P’ image as a
URL. If the AR engine tracks the ‘3624-5P’ image on the handle
in the real world, the wxr-group is augmented on the surface of
the real handle based on the tracking information given by the AR
engine. In other words, the renderer draws three virtual objects
simultaneously on a real handle. If thewxr-group tag did not have
an ar-target attribute, the AR engine would not track the object,
and consequently, the three virtual objects enveloped in the wxr-
group tag are not rendered in AR. In summary, the wxr-group
element acts as a group in the VR and AR environment if there is no
ar-target property, but also acts as an ARAnchor of an augmented
target if the ar-target property exists. This is an important feature



Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Yongjae Lee, Changhyun Moon, Heedong Ko, Soo-Hong Lee, and Byounghyun Yoo

that allows a renderer interpreting XR content to render a single
unified XR code in VR and AR environments.

Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Yongjae Lee, Changhyun Moon, Heedong Ko, Soo-Hong Lee, and Byounghyun Yoo

Figure 3: The problem when AR content is used in VR. (a)
is the result when AR content (Figure 2) runs in AR. The
drone model is augmented above the drone image. (b) is the
expected result when the same content without any modi-
fication runs in VR. Note that the virtual object under the
ARAnchor in the scene hierarchy is never rendered due to
no real-world object tracking in (c).

1 class WXRObj extends WXRGeometry {
2 constructor() {
3 super();
4 }
5
6 static get is() {
7 return "wxr-obj";
8 }
9
10 /* custom code implementation goes here... */
11 }
12
13 customElements.define(WXRObj.is, WXRObj);

Listing 1: XR Element Extension Example

can also easily access content resources from other sites through
the Web.

XR primitives (such as wxr-world, wxr-space, wxr-camera,
etc.) inheriting wxr-element as root can be used to create XR
content. With limited primitive types defined herein, the content
cannot be written flexibly. However, thewxr-element has extends
HTML, allowing user-extension through subclassing of the XR
primitive, for specific purposes. Listing 1 shows how to define a
new WXRObj class with functions to import a 3D model file of
.obj extension. WXRObj inherits WXRGeometry through the
custom element interface. The registered custom element can then
be seamlessly used as a composition of XR content, with predefined
XR primitives.

The creation of XR content is similar to creating a web document.
Just as a web document is structured through embedding HTML
tags, the XR content is structured by embedding XR primitive tags.
wxr-world is the element that acts as the root node of the XR
scene hierarchy. wxr-world performs a necessary initialization
process when used, such as creating an XR scene root node, cam-
era controllers, and registering basic input event listeners such as
mouse clicks and keyboard strokes. The XR content is organized by
combining XR primitive tags with a wxr-world tag. wxr-group

Figure 4: The problem when VR content is used in AR. (a)
is the result when VR content runs in VR. The user sur-
rounded by the background, inspects the drone model. (b)
is the expected result when the same content without any
modification runs in AR. Note that the virtual object, the
drone model, is still rendered due to the real-world object is
tracked in AR, even though the video frame is hidden by the
background image in (c).

1 <html>
2 <style>
3 .red {
4 --wxr-color: #ff0000
5 }
6 .left {
7 --wxr-transform: translate3d(-1,0,0);
8 }
9 </style>
10 <body>
11 <header>XR Content Example</header>
12 <wxr-world>
13 <wxr-camera>
14 <wxr-space background="background.png">
15 <wxr-plane class="red left"

texture="plane.png"></wxr-plane>
16 <wxr-obj obj="book.obj" mtl="book.mtl"

ar-target="book.feature"
style="--wxr-transform:translate3d(1,0,0);"></wxr-obj>

17 </wxr-space>
18 </wxr-world>
19 </body>
20 </html>

Listing 2: XR Content Example

elements play the role of a group, as inferred from the tag name,
which unite other primitives but play an even more important role
in the AR environment. The wxr-group element has an attribute
named ar-target, and it refers to the information of a target to be
augmented as a URL. The AR engine obtains information about
the target through the URL specified in the ar-target property and
tracks the real-world object based on this. When the AR engine
recognizes a real-world object through tracking, it renders a wxr-
group; otherwise, it does not render the wxr-group. Moreover,
the wxr-geometry tag and its descendants are also acceptable of
ar-target property and capable of the same function.

An example of the wxr-group tag and ar-target attribute is
shown in Figure 1. There are three XR objects (handle part of the
ball valve, a curved arrow, directing where the handle is driven, and
annotation, delineating how to disassemble the ball valve) declared
within a wxr-group tag with the ID attribute set to ‘handle_step’.
This means that the three objects are entangled and manipulated
together. Moreover, the wxr-group tag has an ar-target attribute
referring to the feature information of the ‘3624-5P’ image as a
URL. If the AR engine tracks the ‘3624-5P’ image on the handle
in the real world, the wxr-group is augmented on the surface of
the real handle based on the tracking information given by the AR
engine. In other words, the renderer draws three virtual objects
simultaneously on a real handle. If thewxr-group tag did not have
an ar-target attribute, the AR engine would not track the object,
and consequently, the three virtual objects enveloped in the wxr-
group tag are not rendered in AR. In summary, the wxr-group
element acts as a group in the VR and AR environment if there is no
ar-target property, but also acts as an ARAnchor of an augmented
target if the ar-target property exists. This is an important feature
that allows a renderer interpreting XR content to render a single
unified XR code in VR and AR environments.

Listing 2 shows an example of XR content embedded in the gen-
eral HTML code of a web document. Much like the typical web

Listing 2 shows an example of XR content embedded in the gen-
eral HTML code of a web document. Much like the typical web
document, the structure of XR content is declared through HTML-
extendedWXR tags, and the style of XR content is declared through
CSS. Styles can be applied from inline, internal, and external styles
according to HTML standards. By using CSS to separate the presen-
tation and style of the content, it is not necessary to duplicate XR
content code to apply different styles to the same content; that is,
style management is simplified. The wxr-space, in this example,
has a background property that shows a background in VR, not
in AR. Within the wxr-space tag, two exemplar virtual objects
are contained. The wxr-plane is an object placed at the point of
(-1,0,0) with respect to the wxr-space element and colored as red.
Thewxr-obj is an object representing a book placed at the point of
(1,0,0). Since the wxr-obj has an ar-target property that refers to
the book’s features, it is drawn if the AR engine tracks the feature
in AR or not.

The existing VR/AR renderer was designed for only a single user
interaction environment and once this is defined, it cannot properly
interpret the content code for the other user interaction environ-
ment. In order for the proposed XR representation in this paper to
be effective, XR content described by the XR representation must be
rendered flexibly according to the circumstances that suit the user’s
environment. There are two possible problems with the cross-use
of VR/AR content in different user interaction environments, as
seen in the earlier example of Amazon Sumerian.

(1) The problem that virtual objects to be augmented in AR are
not drawn in VR (Figure 3).

(2) The problem that the view of the camera in AR is blocked
by the remaining background and virtual objects of VR (Fig-
ure 4).

The XR renderer considers each problem using the algorithm illus-
trated in Figure 5. The XR renderer stores the desired user interac-
tion environment option selected by the user and uses it to interpret

!"#$%#&'#()*$+,)-()%.

/,)*(+%#+()0(+$)1#,2%$,)"#3,+#455#

*$+%645#,78(9%"#%,#$)*$"$75(

'()0(+$)1#%:(#*$+%645#,78(9%

/,)*(+%#+()0(+$)1#,2%$,)"#3,+#

%:(#%4+1(%#,78(9%#3,+#461-()%#%,#

*$"$75(

/,)*(+%#+()0(+$)1#,2%$,)"#3,+#455#

*$+%645#,78(9%"#%,#*$"$75(
;(%(9%#%:(#%4+1(%#,78(9%#3,+#

461-()%

'()0(+$)1#5,,2#"%4+%

'()0(+$)1#5,,2#()0

Figure 5: XR interpretation algorithm

the XR code properly according to the user’s interaction environ-
ment. If the user’s interaction environment is AR, the XR renderer
initially sets all virtual objects not-to-be-rendered and selectively
renders only the augmentation object when the AR engine tracks
the real-world object. On the other hand, all objects are always
rendered regardless of the ar-target property in VR. For the second
problem, the XR renderer specifies that the background and virtual
objects are not rendered in AR so that the camera video frames are
visible to the user. On the other hand, if the user’s environment is
VR, the renderer provides a realistic immersion to the user by draw-
ing the background and virtual objects. For example, when the XR
content code example in Listing 2 is interpreted through this algo-
rithm, all virtual objects, including the background of wxr-space
element, will be invisible in AR. Then, ‘book.feature’ is tracked
by the AR engine; wxr-obj, in which the ar-target property refer-
ring to ‘book.feature’, is rendered. Meanwhile, all virtual objects,
including the background of wxr-space element, will be visible in
VR, allowing the user to grasp the comprehensive context of the
entire scene. Figure 1 shows a more clear example. As described
earlier, the XR renderer renders all the virtual objects, as shown
in the picture on the left. In AR, the XR renderer renders nothing
but only the augmented virtual objects (handle and curved arrow,
and annotation) embedded within the wxr-group, which has ar-
target attribute referring image feature of ‘3624-5P’, as shown in
the picture on the right.

Generally, the procedure to make an XR content takes five steps.
The first step is preparing virtual resources such as 3D models
and texture images and importing them to the current XR content
project. The next step is to arrange them to have an organized
structure and relationship. These two steps are commonly employed
in making VR content and AR content. The third step is defining
and registering a specific feature by which the AR engine tracks the
real-world object. Up to this step is the general step for creating AR
content. The following steps are for creating XR content. The fourth



Unified Representation for XR Content and its Rendering Method Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea

!"#$%&'"()*+$,-./-$

01*('*($&'23'0()4'567$

(8'*$"2210)"()*+$

(8'9

!:#$%&'"()*+$01*('*($

1*56$1*0'$:6$;2)*+$

;*)<)'=$>-$$01*('*($

&'3&'2'*("()1*

!"#$%&!"#$%'

!"#$%&'
()%&*+,'$-./0&

!"#$%(

12.*3&'
&%+435$%"+&)$4

!"#$%)

6/&'+%7&+%8/&'
+&&%)-*&/

!"#$%*

133$0)+&/'
$-./0&3'$5'&9$'

/4()%$4"/4&3

!"#$%&'
()%&*+,'$-./0&

!"#$%&'
()%&*+,'$-./0&

12.*3&'
&%+435$%"+&)$4

12.*3&'
&%+435$%"+&)$4

:/8)3&/%'
1:'+40;$%

!"#$%&

'()*#"(+'(,

!"#$-&

'()*#"(+'(,

<$88,/'()3)-),)&='
$5'()%&*+,'$-./0&

<$88,/'()3)-),)&='
$5'()%&*+,'$-./0&

!

>'<;)3'#%$0/33?';)22/4'&$'&;/'0$4&/4&'2/(/,$#/%?')3')"#,)0)&,='#/%5$%"/2'-='&;/'@:'%/42/%/%

Figure 6: XR content generation approach comparison. (a) is a very primitive way to make XR content. Along with (a), the
content developer should make two scenes for VR and AR, and then develop a program to combine the two scenes, to work
as one. (b) is the method of using our proposed XR content representation and renderer. The developer working with this
method is not tasked with writing any program for the cross-content compatibility between VR and AR. Note that Step 4 in
(b) is not demanded due to XR renderer, and there is no Step 5 in (b) due to the singleness of XR scene content.

step is toggling the virtual object’s visibility in accordance with
its condition; thus, the object is drawn when the corresponding
real-world object is tracked in AR. Additionally, the association
step, linking the object in VR content with the same object in AR
content (e.g., in Figure 1, the handle model of VR and the handle
of AR), is needed for completing XR content making. With this
step, the linked objects have the same properties as if they were
one. Figure 6 shows a comparison of the needed author’s tasks to
make XR content between the traditional method and the proposed
approach. In our method, the toggle step and association step are
not needed to the author. The former is conducted automatically by
the XR renderer, and the latter is due to the singleness of XR scene
content, which is interoperable regardless of the user’s interaction
environment. The proposed method will dramatically reduce the
XR content authoring task, which frequently occurs and is repeated.
This is advantageous when there is a large number of XR objects
that need to be created.

4 IMPLEMENTATION
A prototype of the XR content development library is implemented,
called the WXR Library, for developers to create XR content with-
out consideration of the user’s interaction environment. The WXR
Library offers two main features: First, an HTML-based markup
language tag set (Table 1) for developing XR content; Second, an
XR renderer (Figure 5), which interprets the XR content, builds up
a scene tree, and draws the XR content according to the user’s
interaction environment. The WXR Library is implemented in
JavaScript, and XR primitives are defined by extending HTMLEle-
ment through WebComponent technology. The THREE.js library
is used to render virtual objects in a web browser. The XR renderer
is implemented and embedded in the wxr-world element. The XR

renderer has property about the user’s interaction environment.
The user chooses which interaction environment he is getting in by
changing the property. According to the property, virtual objects
in the scene are selectively drawn. The wxr-element, which is
the root of the WXR tag hierarchy, has functions about reflecting
changes of attributes of XR elements, including changes of CSS
and hierarchical relation, on the corresponding THREE.js object
or vice versa. Thus, other elements inheriting wxr-element, such
as wxr-camera, are implemented focusing on only their idiosyn-
cratic functions and logics without any further consideration of
the attribute changes and reflection to the THREE.js objects. For
creating an XR content, what the author has to do is just to import
the WXR Library into a web document and to describe XR content
along with HTML grammar, as shown in Listing 2.

The WXR Library provides authors with the capability of devel-
oping XR collaboration content that manipulates real-world objects.
This is a distinctive feature compared to the recent XR collabo-
ration service like Spatial, which only manipulates virtual data.
Figure 7 shows the collaboration situation of real-world objects.
This situation frequently occurs at an industrial plant where mul-
tiple machines are installed. As there are a few people who can
control and fix all installed machines in the plant, experts’ assis-
tance is required. However, it is difficult for experts to reside in
one factory constantly. In this situation, XR collaboration would
be beneficial to experts and local workers. Without visiting there,
the expert can give the directives to the local workers, based on the
state of virtual objects synchronized with the real-world objects
in the site through the single XR content. The local workers can
catch and follow the directives through augmented virtual objects
on real-world ones. The following three examples are provided for
a better understanding of XR collaboration using the WXR Library.



Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Yongjae Lee, Changhyun Moon, Heedong Ko, Soo-Hong Lee, and Byounghyun Yoo

!"#$%&&'(%)'*+%,

!"#$%&'()*''%+,%-.%+',

/012

-..+.*',*#$/,*/)0,12+*/#3&',*

34&*5,64+7%+8

/912

Figure 7: Description of the situation of XR collaboration
manipulating a real-world object. The object and local work-
ers participating in the collaboration are on-site in the plant
(left-side). They receive the directives for the task through
an AR device (i.e., AR glasses) from the expert who is at the
assistant center in the remote. The subject-matter expert
participates in the collaboration through a VR device (i.e.,
HMD) (right-side). The expert and local workers can recog-
nize each other through the virtual world or through aug-
mented objects on real-world objects. Note that the translu-
cent gray graphics in the figure represent virtual objects.

Figure 8 shows a collaboration situation between a local worker
and a remote expert for replacing a powder keg of a metal 3D
printer. If the 3D printer’s material has been exhausted, the existing
powder keg needs to be replaced with a new one filled with metal
powder. However, workers in the field do not have the relevant
knowledge. Hence, a collaboration by requesting remote assistance
from the expert is a favorable solution to this situation. The remote
expert participating through VR shows the required order of work
to the local worker by manipulating virtual objects in an environ-
ment surrounded by a realistic background, which is a photo of
the site area. Because field workers have to deal with real objects,
they participate through AR and intuitively learn the sequence of
work by augmented objects over the real objects. In the traditional
VR/AR content development tool, the content for each of the user
interaction environments should be created separately, but it can
be written at once via the WXR Library. Users use the XR content
by switching the property of XR renderer about user interaction
environment as needed.

Listing 3 is the XR content code for the situation of Figure 8.
This code-block starting with a wxr-world tag is excerpted from
an entire HTML document. The style tag at the top defines CSS
rules for the XR content. Currently, two properties (–wxr-color,
–wxr-transform) are supported in the WXR Library. After the
style declaration, the XR content declaration is followed. The at-
tributes of the wxr-camera are changed according to the intrinsic
properties of the physical camera of the device when the user is
in AR. The following wxr-space tag conceptually distinguishes it
from another XR scene; for example, the XR scene of maintenance

for other parts of the 3D printer. An XR scene consists of several
elements, including the background. The background property of
wxr-space, referring to 360 images on the desktop, and all 3D
objects including the powder keg (gray cylinder-shaped object),
the powder plate (blue colored object under the keg), and the base
(compound of dark gray and magenta-colored objects) are rendered
in VR (Figure 8a), since all virtual objects are visible in VR (Fig-
ure 5). Meanwhile, only objects within the wxr-group with ID
powder_keg_step are rendered in AR (Figure 8b), since all virtual
objects are initially invisible and only the objects tracked by the
AR Engine are rendered.Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Yongjae Lee, Changhyun Moon, Heedong Ko, Soo-Hong Lee, and Byounghyun Yoo

Figure 5: XR interpretation algorithm

and texture images and importing them to the current XR content
project. The next step is to arrange them to have an organized
structure and relationship. These two steps are commonly employed
in making VR content and AR content. The third step is defining
and registering a specific feature by which the AR engine tracks the
real-world object. Up to this step is the general step for creating AR
content. The following steps are for creating XR content. The fourth
step is toggling the virtual object’s visibility in accordance with
its condition; thus, the object is drawn when the corresponding
real-world object is tracked in AR. Additionally, the association
step, linking the object in VR content with the same object in AR
content (e.g., in Figure 1, the handle model of VR and the handle
of AR), is needed for completing XR content making. With this
step, the linked objects have the same properties as if they were
one. Figure 6 shows a comparison of the needed author’s tasks to
make XR content between the traditional method and the proposed
approach. In our method, the toggle step and association step are
not needed to the author. The former is conducted automatically by
the XR renderer, and the latter is due to the singleness of XR scene
content, which is interoperable regardless of the user’s interaction
environment. The proposed method will dramatically reduce the
XR content authoring task, which frequently occurs and is repeated.
This is advantageous when there is a large number of XR objects
that need to be created.

4 IMPLEMENTATION
A prototype of the XR content development library is implemented,
called the WXR Library, for developers to create XR content with-
out consideration of the user’s interaction environment. The WXR
Library offers two main features: First, an HTML-based markup
language tag set (Table 1) for developing XR content; Second, an
XR renderer (Figure 5), which interprets the XR content, builds up
a scene tree, and draws the XR content according to the user’s
interaction environment. The WXR Library is implemented in
JavaScript, and XR primitives are defined by extending HTMLEle-
ment through WebComponent technology. The THREE.js library
is used to render virtual objects in a web browser. The XR renderer
is implemented and embedded in the wxr-world element. The XR
renderer has property about the user’s interaction environment.
The user chooses which interaction environment he is getting in by
changing the property. According to the property, virtual objects
in the scene are selectively drawn. The wxr-element, which is
the root of the WXR tag hierarchy, has functions about reflecting
changes of attributes of XR elements, including changes of CSS
and hierarchical relation, on the corresponding THREE.js object
or vice versa. Thus, other elements inheriting wxr-element, such
as wxr-camera, are implemented focusing on only their idiosyn-
cratic functions and logics without any further consideration of
the attribute changes and reflection to the THREE.js objects. For
creating an XR content, what the author has to do is just to import
the WXR Library into a web document and to describe XR content
along with HTML grammar, as shown in Listing 2.

1 <!-- Other HTML tags of an web document... -->
2 ...
3
4 <wxr-world>
5 <style>
6 /* Style definitions for XR objects... */
7 wxr-camera[name="Main Cam"] {
8 --wxr-transform : translate3d(-0.1881,0.8855,0.7293)

rotate3d(0.01194,-0.1695,0.002);
9 }
10 #powder_keg_step wxr-obj[name="Powder Keg"] {
11 --wxr-transform: translate3d(-0.034,0.1863,0.137)

rotate3d(0,3.14,0) scale3d(0.9,0.9,0.9);
12 }
13 #powder_keg_step wxr-obj[name="Powder Plate"] {
14 --wxr-transform: translate3d(-0.034,0.078,0.137)

rotate3d(0,-0.55,0) scale3d(1,1,1);
15 --wxr-color: #00ff00;
16 }
17 ...
18 </style>
19
20 <wxr-camera name="Main Cam" fovy="61" near="0.05" far="1000" fov="49"

aspect="0.75"></wxr-camera>
21 <wxr-space background="on_top_of_desk1.png">
22
23 <!-- Environment objects like lights... -->
24 <wxr-light-ambient name="Ambient Light"

style="color:0xf0f0f0"></wxr-light-ambient>
25 ...
26
27 <!-- Powder model group -->
28 <wxr-group name="Powder Model" id="powder_model">
29
30 <!-- Powder Keg Step: Disassemble powder keg from base -->
31 <wxr-group id="powder_keg_step" ar-target="powder/keg">
32 <wxr-obj name="Powder Keg" obj="powder.obj"

mtl="powder.mtl"></wxr-obj>
33 <wxr-obj name="Powder Plate"

obj="plateassy.obj"></wxr-obj>
34 <wxr-obj name="Left Arrow" obj="leftarrow.obj"></wxr-obj>
35 <wxr-obj name="Right Arrow" obj="leftarrow.obj"></wxr-obj>
36 <wxr-plane name="Annot Keg"

texture="powder_keg_annot.png"></wxr-plane>
37 </wxr-group>
38
39 <!-- Bush Step: Pick out bush and shaft from base -->
40 <wxr-group id="bush_step" ar-target="powder/bush">
41 ...
42 </wxr-group>
43
44 <!-- Base model (not augmented) -->
45 <wxr-obj name="Base Front" obj="basefront.obj"></wxr-obj>
46 <wxr-obj name="Base Back" obj="baseback.obj"></wxr-obj>
47 <wxr-obj name="Base Bottom" obj="basebottom.obj"></wxr-obj>
48 </wxr-group>
49 </wxr-space>
50 </wxr-world>

Listing 3: XR code snippet for example 1

The WXR Library provides authors with the capability of devel-
oping XR collaboration content that manipulates real-world objects.
This is a distinctive feature compared to the recent XR collabo-
ration service like Spatial, which only manipulates virtual data.
Figure 7 shows the collaboration situation of real-world objects.
This situation frequently occurs at an industrial plant where mul-
tiple machines are installed. As there are a few people who can
control and fix all installed machines in the plant, experts’ assis-
tance is required. However, it is difficult for experts to reside in



Unified Representation for XR Content and its Rendering Method Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea

!"#$%&!'#$(&

!"#$% &"'()'

*$+%),-./012

3)4",)-567)',

Figure 8: Rendering result of Listing 3 in VR and AR. The ex-
pert in VR (accessed with an Oculus Quest HMD) is demon-
strating how to disassemble the powder keg (gray cylinder)
from the base of a metal 3D printer (assembled part of ma-
genta shaft and dark gray box) (a), and the local worker is
watching it throughARwith a SamsungGalaxyTab S3 tablet
(b). The object tracked by the AR engine is the wxr-group
with ID ‘powder_keg_step’; thus, five objects (named as Pow-
der Keg, Powder Plate, Left Arrow, Right Arrow, and Annot
Keg) are augmented on the worker’s screen. Note that all ob-
jects, including the wxr-group with ID ‘bush_step’ and the
base part, are rendered in VR, whereas only objects within
the wxr-group with ID ‘handle_step’ are rendered in AR.

The ball valve is one of the most common mechanical devices
in industrial plants. The ball valve contains a perforated ball that
controls fluid passing through pipes. Friction caused by rotating the
ball or collision with foreign substances passing through the valve
may cause damage to the ball. In order to replace the damaged ball,
a remote expert manipulates the virtual object of the ball valve in
VR to demonstrate the process of dismantling the ball valve to the
workers at the site, and the local workers follow the augmented
virtual object’s movements. Figure 9 shows the rendering results in
each user interaction environment from a single XR code, as in the
previous example.

Figure 10 shows the operation of the exhaust valve. Owing to
the exhaust valve characteristics through which hot gases pass,
the parts inside are prone to corrosion. To replace the parts inside
the exhaust valve, the valve must be opened first. However large
exhaust valves such as the one in the picture are heavy, making it
difficult to control them manually. In the third example, an expert
in the remote area informs the local workers of a lever that needs
to be manipulated to open the exhaust valve in VR; workers in the
field then follow the work instructions through AR and observe
the valve opening normally, alongside the expert who is in VR.
Similarly, this example content was written in XR code, which the
expert and workers used in VR and AR, respectively.

5 CONCLUSION
In this paper, we discussed the limitations of cross-usability (using
AR content in VR or vice versa) in the traditional methods describ-
ing VR/AR content; and proposed a method for authoring unified

!"#$%&

!'#$(&!)#$*&$+,-./-.$+,0/

Figure 9: The XR content code snippet (a) for replacing ball
in ball valve and its rendering result in both VR andAR. The
local worker is closing the valve after receiving instructions
from the expert, and another local worker holding the iPad
is observing this (b). The remote expert is observing the pro-
cess in VR with an Acer Windows Mixed Reality headset (c).
The tracked object by the AR engine is the wxr-group with
ID ‘hadle_step’; thus, three objects (named as Handle, Han-
dle Instruction, and Annot Handle) are augmented on the
worker’s screen. Note that all virtual objects, including wxr-
group with ID ‘cover_step’ and the base part, are rendered
in VR, albeit only objects within wxr-group with ID ‘han-
dle_step’ are rendered in AR.

XR content and its interpretation algorithm. The unified XR con-
tent representation addresses the threshold of cross-usability and
duplicated content creation depending on the users’ interaction
environment. The XR content representation extends HTML to be
parsed to DOMwithout errors in the web browser and can be easily
embedded into existing web documents. Besides, content authors
can extend the basic primitive defined here to add new features and
achieve high scalability. The XR renderer visualizes the XR content
code without the two problems of VR/AR cross-use, by employing
rendering algorithms of different methods, depending on the user’s
user interaction environment. These features enable the developer
to create XR content interoperable between different devices, e.g.,
AR Glasses, Smartphone, HMD, that support HTML5.

The implementation and three examples discussed above provide
us inspiration for remote cooperation through XR. The workers col-
laborate on real objects without having to gather in one geographic
location. Although they are physically separated from each other,
they can still participate in collective activities and tasks using a
single XR content. However, there is still scope for improvement.
For example, the user in VR has difficulty recognizing the entire
situation of the site in AR. The background in VR gives the user an
immersive experience, but it may contribute to misunderstanding,
as only parts of the environment represent the actual environment
in real-time. Therefore, the future work will concentrate on more
comprehensive research required to address the impending prob-
lem by reflecting the dynamic environmental changes of the site in
AR into the background in VR.



Web3D ’20, November 9–13, 2020, Virtual Event, Republic of Korea Yongjae Lee, Changhyun Moon, Heedong Ko, Soo-Hong Lee, and Byounghyun Yoo

!"#$%&

!'#$(&!)#$*&$+,-./-.$+,0/

Figure 10: The XR content code snippet (a) for open-
ing/closing exhaust valve and its rendering result in both
VR and AR. The local worker is lowering the lever of the
valve following the instructions from the remote expert for
closing the valve, and another local worker holding the iPad
is observing the valve operating (b). The remote expert is
observing the process in VR with an Acer Windows Mixed
Reality headset (c). The object tracked by the AR engine is
a wxr-group with ID LINK; thus, four objects (named with
Arm, Lever, and Joint) are augmented on theworker’s screen.
Note that all objects, including body parts, are rendered in
VR, albeit only objects within wxr-group with ID LINK, are
rendered in AR.

ACKNOWLEDGMENTS
This work was supported by the Korea Institute of Science and Tech-
nology (KIST) under the Institutional Program (Grant No. 2V08640
and 2E30270).

REFERENCES
8th Wall Inc. 2018. 8th Wall. Retrieved July 17, 2020 from https://www.8thwall.com
Amazon Web Services Inc. 2018. Amazon Sumerian. Retrieved July 17, 2020 from

https://aws.amazon.com/sumerian
Apple Inc. 2017. ARKit. Retrieved July 20, 2020 from https://developer.apple.com/

augmented-reality
Apple Inc. 2019. AR Quick Look. Retrieved July 20, 2020 from https://developer.apple.

com/augmented-reality/quick-look
Johannes Behr, Peter Eschler, Yvonne Jung, and Michael Zöllner. 2009. X3DOM: A

DOM-Based HTML5/X3D Integration Model. In Proceedings of the 14th Interna-
tional Conference on 3D Web Technology (Web3D ’09). Association for Computing
Machinery, New York, NY, USA, 127–135. https://doi.org/10.1145/1559764.1559784

Johannes Behr, Yvonne Jung, Timm Drevensek, and Andreas Aderhold. 2011. Dynamic
and interactive aspects of X3DOM. In Proceedings - 16th International Conference on
3DWeb Technology, Web3D 2011 (Web3D ’11). Association for ComputingMachinery,
New York, NY, USA, 81–87. https://doi.org/10.1145/2010425.2010440

Julie Carmigniani, Borko Furht, Marco Anisetti, Paolo Ceravolo, Ernesto Damiani,
and Misa Ivkovic. 2011. Augmented reality technologies, systems and applications.
Multimedia Tools and Applications 51, 1 (jan 2011), 341–377. https://doi.org/10.
1007/s11042-010-0660-6

Diego Marcos, Don McCurdy, and Kevin Ngo. 2015. A-Frame. Retrieved July 17, 2020
from https://aframe.io

Epic Games Inc. 1998. Unreal Engine. Retrieved July 17, 2020 from https://www.
unrealengine.com

Fraunhofer Society. 2009. x3dom.org. Retrieved July 17, 2020 from https://www.
x3dom.org

Georgia Tech. 2011. KHARMA. Retrieved July 17, 2020 from http://kharma.gatech.edu
Google Inc. 2018. ARCore. Retrieved July 20, 2020 from https://developers.google.

com/ar
Seungyeon Huh, Shapna Muralidharan, Heedong Ko, and Byounghyun Yoo. 2019. XR

collaboration architecture based on decentralized web. In Proceedings - Web3D

2019: 24th International ACM Conference on 3D Web Technology. Association for
Computing Machinery, Inc, New York, NY, USA, 1–9. https://doi.org/10.1145/
3329714.3338137

I Love IceCream Ltd. 2020. DeepAR. Retrieved July 17, 2020 from https://www.deepar.ai
María Blanca Ibáñez and Carlos Delgado-Kloos. 2018. Augmented reality for STEM

learning: A systematic review. Computers and Education 123 (aug 2018), 109–123.
https://doi.org/10.1016/j.compedu.2018.05.002

IEEE. 2020. IEEE VR 2020. Retrieved July 17, 2020 from https://ieeevr.org/2020
Jacek Jankowski, Sandy Ressler, Kristian Sons, Yvonne Jung, Johannes Behr, and Philipp

Slusallek. 2013. Declarative integration of interactive 3D graphics into the world-
wide web: Principles, current approaches, and research agenda. In Proceedings
- Web3D 2013: 18th International Conference on 3D Web Technology (Web3D ’13).
Association for Computing Machinery, New York, NY, USA, 39–46. https://doi.
org/10.1145/2466533.2466547

H. Kato and M. Billinghurst. 1999. Marker tracking and HMD calibration for a video-
based augmented reality conferencing system. In Proceedings - 2nd IEEE and ACM
International Workshop on Augmented Reality, IWAR 1999. Institute of Electrical and
Electronics Engineers Inc., 85–94. https://doi.org/10.1109/IWAR.1999.803809

Hyejin Kim, Hyoseok Yoon, Ahyoung Choi, Woonhyuk Baek, Ilgu Lee, Dongchul Kim,
and Woontack Woo. 2011. Data Markup Representation for Mixed Reality Con-
tents. In International AR Standards Meeting. http://www.perey.com/ARStandards/
GIST{_}MRContents.pdf

Gun A. Lee, Theophilus Teo, Seungwon Kim, and Mark Billinghurst. 2017. Mixed
reality collaboration through sharing a live panorama. In SIGGRAPH Asia 2017
Mobile Graphics and Interactive Applications, SA 2017. ACM Press, New York, New
York, USA, 1–4. https://doi.org/10.1145/3132787.3139203

Gun A. Lee, Theophilus Teo, Seungwon Kim, and Mark Billinghurst. 2019. A User
Study on MR Remote Collaboration Using Live 360 Video. In Proceedings of the
2018 IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2018.
Institute of Electrical and Electronics Engineers Inc., 153–164. https://doi.org/10.
1109/ISMAR.2018.00051

SteveMann, Tom Furness, Yu Yuan, Jay Iorio, and ZixinWang. 2018. All Reality: Virtual,
Augmented, Mixed (X), Mediated (X,Y), and Multimediated Reality. arXiv preprint
arXiv:1804.08386 (apr 2018). arXiv:1804.08386 http://arxiv.org/abs/1804.08386

MAXST Ltd. 2017. MAXST. Retrieved July 17, 2020 from http://maxst.com
Open Geospatial Consortium. 2010. ARML. Retrieved July 17, 2020 from https:

//www.ogc.org/standards/arml
Erik Poppe, Ross Brown, Daniel Johnson, and Jan Recker. 2012. Preliminary Evaluation

of an Augmented Reality Collaborative Process Modelling System. In 2012 Interna-
tional Conference on Cyberworlds. IEEE, 77–84. https://doi.org/10.1109/CW.2012.18

PTC Inc. 2011. Vuforia. Retrieved July 17, 2020 from https://www.ptc.com/en/
products/augmented-reality/vuforia

PTC Inc. 2017. Vuforia Chalk. Retrieved July 17, 2020 from https://chalk.vuforia.com
Scope Technologies US Inc. 2018. Scope AR. Retrieved July 17, 2020 from https:

//www.scopear.com
Y Shen, S.K. Ong, and A.Y.C. Nee. 2010. Augmented reality for collaborative product

design and development. Design Studies 31, 2 (mar 2010), 118–145. https://doi.org/
10.1016/j.destud.2009.11.001

Kristian Sons, Felix Klein, Dmitri Rubinstein, Sergiy Byelozyorov, and Philipp Slusallek.
2010. XML3D: Interactive 3D Graphics for the Web. In Proceedings of the 15th Inter-
national Conference on Web 3D Technology (Web3D ’10). Association for Computing
Machinery, New York, NY, USA, 175–184. https://doi.org/10.1145/1836049.1836076

Spatial Systems Inc. 2018. Spatial. Retrieved July 17, 2020 from https://spatial.io
Jan Sutter, Kristian Sons, and Philipp Slusallek. 2015. A CSS Integration Model for

Declarative 3D. In Proceedings of the 20th International Conference on 3D Web
Technology (Web3D ’15). Association for Computing Machinery, New York, NY,
USA, 209–217. https://doi.org/10.1145/2775292.2775295

Unity Technologies. 2005. Unity. Retrieved July 17, 2020 from https://unity.com
VisionStar Information Technology Ltd. 2015. EasyAR. Retrieved July 17, 2020 from

https://www.easyar.com
VRChat Inc. 2017. VRChat. Retrieved July 17, 2020 from https://vrchat.com
Web3D Consortium. 2001. X3D. Retrieved July 17, 2020 from https://www.web3d.

org/x3d/what-x3d
Wikitude GmbH. 2008. Wikitude. Retrieved July 17, 2020 from https://www.wikitude.

com

https://www.8thwall.com
https://aws.amazon.com/sumerian
https://developer.apple.com/augmented-reality
https://developer.apple.com/augmented-reality
https://developer.apple.com/augmented-reality/quick-look
https://developer.apple.com/augmented-reality/quick-look
https://doi.org/10.1145/1559764.1559784
https://doi.org/10.1145/2010425.2010440
https://doi.org/10.1007/s11042-010-0660-6
https://doi.org/10.1007/s11042-010-0660-6
https://aframe.io
https://www.unrealengine.com
https://www.unrealengine.com
https://www.x3dom.org
https://www.x3dom.org
http://kharma.gatech.edu
https://developers.google.com/ar
https://developers.google.com/ar
https://doi.org/10.1145/3329714.3338137
https://doi.org/10.1145/3329714.3338137
https://www.deepar.ai
https://doi.org/10.1016/j.compedu.2018.05.002
https://ieeevr.org/2020
https://doi.org/10.1145/2466533.2466547
https://doi.org/10.1145/2466533.2466547
https://doi.org/10.1109/IWAR.1999.803809
http://www.perey.com/ARStandards/GIST{_}MRContents.pdf
http://www.perey.com/ARStandards/GIST{_}MRContents.pdf
https://doi.org/10.1145/3132787.3139203
https://doi.org/10.1109/ISMAR.2018.00051
https://doi.org/10.1109/ISMAR.2018.00051
https://arxiv.org/abs/1804.08386
http://arxiv.org/abs/1804.08386
http://maxst.com
https://www.ogc.org/standards/arml
https://www.ogc.org/standards/arml
https://doi.org/10.1109/CW.2012.18
https://www.ptc.com/en/products/augmented-reality/vuforia
https://www.ptc.com/en/products/augmented-reality/vuforia
https://chalk.vuforia.com
https://www.scopear.com
https://www.scopear.com
https://doi.org/10.1016/j.destud.2009.11.001
https://doi.org/10.1016/j.destud.2009.11.001
https://doi.org/10.1145/1836049.1836076
https://spatial.io
https://doi.org/10.1145/2775292.2775295
https://unity.com
https://www.easyar.com
https://vrchat.com
https://www.web3d.org/x3d/what-x3d
https://www.web3d.org/x3d/what-x3d
https://www.wikitude.com
https://www.wikitude.com

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Implementation 
	5 Conclusion
	Acknowledgments
	References



