
Sharing Ambient Objects Using Real-time Point Cloud
Streaming in Web-based XR Remote Collaboration
Yongjae Lee

Korea Institute of Science and
Technology
Seoul, Korea

Department of Mechanical
Engineering

Yonsei University
Seoul, Korea

yongjae.lee@wrl.onl

Byounghyun Yoo∗
Korea Institute of Science and

Technology
Seoul, Korea

Division of Nano & Information
Technology, KIST School

Korea University of Science and
Technology
Seoul, Korea
yoo@byoo.net

Soo-Hong Lee∗
Department of Mechanical

Engineering
Yonsei University

Seoul, Korea
shlee@yonsei.ac.kr

Hand-held
AR Device

VR HMD

VR Controllers

Remote SiteLocal Site

XR Scene Synchronization
Using WebSocket

Point Cloud Streaming
Using WebRTC

Worker Expert

(2)

(1)

Worker

Worker

Expert(a)

(b) (c)

Figure 1: Overview of the proposed XR collaboration method: (a) The worker at the local site shows his workspace by replicat-
ing the space as point cloud data and streaming them byWebRTC, and shares the pose information of the ball valve (1), which
the worker and expert are collaborating on via WebSocket. The expert at the remote site observes the worker’s workspace
through the point cloud and understands the status of the ball valve through its pose-synchronized 3D model. (b) The virtual
space where the expert resides is being filled with the point cloud from the worker. (c) There are two types of virtual objects in
the virtual space. The ball valve (1) is 3Dmodeled in advance, and the spanner (2) is reconstructed immediately by the worker.

ABSTRACT
Extended reality (XR) collaboration enables collaboration between
physical and virtual spaces. Recent XR collaboration studies have
focused on sharing and understanding the overall situation of the
objects of interest (OOIs) and its surrounding ambient objects (AOs)
rather than simply recognizing the existence of OOI. The sharing of
the overall situation is achieved using three-dimensional (3D) mod-
els that replicate objects existing in the physical workspace. There

∗Corresponding authors: Byounghyun Yoo (yoo@byoo.net) and Soo-Hong Lee
(shlee@yonsei.ac.kr).

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs International 4.0 License.

Web3D ’21, November 8–12, 2021, Pisa, Italy
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9095-8/21/11.
https://doi.org/10.1145/3485444.3487642

are two approaches for creating the models: pre-reconstruction and
real-time reconstruction. The pre-reconstruction approach takes
considerable time to create polygon meshes precisely, and the real-
time reconstruction approach requires a considerable time to install
numerous sensors to perform accurate 3D scanning. In addition,
these approaches are difficult to be used on the collaboration in a
location beyond the reconstructed space, making them impracti-
cal to an actual XR collaboration. The approach proposed in this
study separates the objects that form the physical workspace into
OOI and AO, models only the OOI as a polygon mesh in advance,
and reconstructs the AO into a point cloud using light detection
and ranging technology for collaboration. The reconstructed point
cloud is shared with remote collaborators through WebRTC, a web-
based peer-to-peer networking technology with low latency. Each
remote collaborator collects the delivered point cloud to form a
virtual space, so that they can intuitively understand the situation at
a local site. Because our approach does not create polygon meshes
for all objects existing at the local site, we can save time to prepare

https://orcid.org/0000-0003-1692-2117
https://orcid.org/0000-0001-9299-349X
https://orcid.org/0000-0003-2168-642X
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3485444.3487642

Web3D ’21, November 8–12, 2021, Pisa, Italy Yongjae Lee, Byounghyun Yoo, and Soo-Hong Lee

for collaboration. In addition, we can improve the practicality of XR
collaboration by eliminating the need to install numerous sensors
at the local site. We introduce a prototype and an example scenario
to demonstrate the practicality of our approach.

CCS CONCEPTS
• Human-centered computing → Collaborative and social com-
puting systems and tools; Mixed / augmented reality; Virtual
reality; Web-based interaction.

KEYWORDS
Extended reality, XR, Virtual reality, Augmented reality, Web-based
XR, Remote XR collaboration, Real-time point cloud streaming

ACM Reference Format:
Yongjae Lee, Byounghyun Yoo, and Soo-Hong Lee. 2021. Sharing Ambient
Objects Using Real-time Point Cloud Streaming in Web-based XR Remote
Collaboration. In The 26th International Conference on 3D Web Technology
(Web3D ’21), November 8–12, 2021, Pisa, Italy. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3485444.3487642

1 INTRODUCTION
With advances in hardware and vision recognition technology,
virtual reality (VR) and augmented reality (AR) have permeated
many aspects of our lives. Prospective buyers can tour houses using
VR without physically visiting the house [TopVIEW 2021]. Students
can effectively learn about the elements of nature through AR and
solve quizzes augmented on a see-through screen instead of reading
a textbook [Alakärppä et al. 2017]. VR and AR are collectively
referred to as extended reality (XR), and XR systems can eventually
allow users to choose and alternate between VR andAR according to
their preferences. Moreover, XR technology has gained significant
attention in the context of the web community, considering that an
XR specification for the Web, called WebXR, is being established in
the World Wide Web Consortium.

XR technology is also active in remote collaboration because it
allows intuitive information delivery by displaying virtual objects
instead of delivering information abstractly through speech or writ-
ing. Early XR collaboration studies focused only on conveying the
information necessary for collaboration. Using their methods, col-
laboration is conducted by marking parts or attaching annotations
of work information on a screen where the local worker needs to
concentrate [Gauglitz et al. 2014; Nuernberger et al. 2016]. Recent
research has focused on quickly and effectively communicating
workers’ intentions by sharing various communication cues, such
as their gazes, hand gestures, and heart rates [Bai et al. 2020; Dey
et al. 2017; Piumsomboon et al. 2017].

Meanwhile, research on improving the spatial awareness of re-
mote workers is being actively conducted [Gao et al. 2020, 2017;
Irlitti et al. 2019]. Improved spatial awareness allows a remote
worker to easily identify their location relative to another worker
or an object of interest (OOI). Two-dimensional (2D) images (in-
cluding videos) or three-dimensional (3D) models are used as a
medium for delivering spatial awareness cues. Using a 2D image
has the advantage of allowing the remote worker to view a realistic
representation of the local worker’s workspace. However, there is
no depth in the image, and the remote worker is unable to change

the viewpoint of the local worker’s camera at will. When using a
3D model, the remote worker explores a virtual space consisting
of 3D models that replicate objects existing at the local site. The
remote worker can freely navigate the virtual space, changing their
viewpoint independently of the local worker camera. However, a
reconstructed 3D model is less realistic than a 2D image. Thus,
recent studies have conducted photo-realistic 3D rendering using
several methods, such as neural nets [Aliev et al. 2020; Dai et al.
2020].

To generate 3D models of objects existing at a local site, devices
with embedded optical depth sensor systems, such as Microsoft
HoloLens and Microsoft Kinect, are widely used. Using such hard-
ware, the local worker scans the local site before starting the col-
laboration, to obtain depth maps at various angles. The acquired
depth maps are then combined to reconstruct the geometric infor-
mation of the local site into a single point cloud or polygon mesh
[Piumsomboon et al. 2017]. The reconstructed 3D model (point
cloud or polygon mesh) is delivered to remote workers and used
as a cue to help them gain spatial awareness of the local site in
VR. In addition, a method has been studied to reconstruct the 3D
model in real time by installing multiple sensors on the local site
without scanning around the site [Lindlbauer and Wilson 2018].
Both pre- and real-time 3D model reconstructions in preparation
for collaboration (e.g., scanning the local site and installing sensors)
are time consuming. Therefore, it is difficult to initiate a collabora-
tion promptly when no preparation has yet been made. Moreover,
it is difficult to collaborate outside of the replicated space, even if a
3D model of the local site has been prepared.

We previously studied a system that captures and broadcasts
the geometry of a local site as a point cloud in real time [Seo et al.
2017], a methodology for webizing various interaction devices [Seo
et al. 2018], an XR collaboration system with distributed web tech-
nologies [Huh et al. 2019], a web-based XR content representation
method and its rendering algorithm [Lee et al. 2020], and a unified
coordinate system for VR and AR [Lee and Yoo 2021]. This study
extends the aforementioned concepts. Our method is a hybrid ap-
proach combining the conventional pre-reconstruction approach
for OOIs and the real-time reconstruction approach for ambient
objects (AOs). The reconstructed 3D model for OOIs is a polygon
mesh and is used to represent the state of the OOI (e.g., pose infor-
mation). The reconstructed 3D model for AOs is a point cloud and
is utilized as a background for VR, helping a remote worker acquire
spatial awareness of the local site. Through this hybrid approach,
the preparation time for a collaboration is effectively reduced be-
cause only the OOI, as opposed to the entire local site, requires
pre-reconstruction. Furthermore, workers can reuse the content in
another location by simply scanning again for spatial awareness of
that location. This reuse enables flexible content design and efficient
XR collaboration.

Contributions of this paper can be summarized:

(1) An XR collaboration system that uses a hybrid approach in
sharing a local worker’s overall situation

(2) A method for removing points representing an OOI from a
reconstructed point cloud

(3) A packet structure that can be used immediately upon receipt
in point cloud data streaming with WebRTC

https://doi.org/10.1145/3485444.3487642

Sharing Ambient Objects Using Real-time Point Cloud Streaming in Web-based XR Remote Collaboration Web3D ’21, November 8–12, 2021, Pisa, Italy

2 RELATEDWORK
2.1 XR collaboration
XR collaboration implies that a group of people work together to
address a common purpose through VR and AR interfaces. In XR
collaboration, the OOI can be either a virtual object or a physical
object. If the OOI is a virtual object, the collaboration is conducted
only on the virtual object [Grandi et al. 2019; Poretski et al. 2018].
The physical environment on the AR side serves only as the back-
ground for placing virtual objects. If the OOI is a physical object,
virtual objects are used as a means to convey information about
physical tasks [Fakourfar et al. 2016; Kim et al. 2019; Seo et al. 2016;
Wang et al. 2020]. A local worker using AR learns the tasks they
need to perform by looking at the virtual objects (such as gestures,
drawings, and animations) augmented near the OOI. In existing
XR collaboration studies, local and remote workers share informa-
tion about and interact only with the OOI. They do not utilize the
environment outside the OOI.

2.2 Sharing physical environment
Previous studies have shared information about the situation of
a local site and utilized them in collaboration. The SharedSphere
system uses 360◦ live video streaming to share the situation [Lee
et al. 2017]. In the SharedSphere, the local worker shares infor-
mation about both the OOI and AOs via live video. Other studies
have captured a 3D snapshot of the objects that form the local site
as a point cloud and share it with the remote worker in VR [Gao
et al. 2018, 2017]. In the 360◦ live video method, the remote worker
can understand the situation only from the viewpoint of the local
worker’s camera. Conversely, using the point cloud method, the
remote worker can freely navigate and inspect the local site from
any location. However, the point cloud does not reflect dynamic
changes occurring during the collaboration because it is a static
scene that replicates the situation at the time the local site was
scanned. Collaboration systems that use both 360◦ live videos and
point clouds to compensate for the shortcomings of both meth-
ods have been proposed [Gao et al. 2020; Teo et al. 2019, 2020]. In
these systems, the 3D reconstruction process of the local site and
the delivery process of the reconstructed 3D model to the remote
worker occur in turn. It is difficult to obtain live feedback from the
remote worker in the 3D reconstruction process, which results in
inefficiencies, such as scanning of unnecessary objects or dropping
details of the required parts.

3 METHODOLOGY
Our primary idea is to separate the objects that form the workspace
of the local site into OOI and AO. To represent the OOI, a 3D
modeled polygon mesh was used. A remote worker can intuitively
teach a local worker about task instructions by demonstrating them
with the polygon model. The XR collaboration process using the
polygon model of the OOI follows the method presented in our
previous work [Lee et al. 2020; Lee and Yoo 2021]. For the AO, the
local worker generates a point cloud replicating only AO, and then
delivers it to the remote worker via peer-to-peer networking. The
remote worker receives the point cloud and uses it as an immersive
VR background.

3.1 XR collaboration
In the XR collaborationmethod of Lee and Yoo [2021], a local worker
performing a physical task participates in the collaboration through
an AR interface. In their method, it was not intended for a local
worker to use a VR interface because it would completely block
information from the local worker’s surrounding environment,
making it difficult for the local worker to interact with physical
objects. Once the local worker recognizes the OOI through the
AR device, various information (e.g., annotations) aiding the local
worker’s task is augmented around the OOI. Feature information
is required for recognizing the OOI, and it is recorded in an XR
content with the annotations. The most commonly used annotation
type for OOI is polygon mesh. Recognizing the OOI can be accom-
plished by various tracking systems (e.g., ARKit [Apple Inc. 2017]
or Wikitude [Wikitude GmbH 2008]), which detect the OOI and
calculate the OOI’s pose (position and orientation) using the feature
information. After attaining the pose, the AR device passes them
over the network to a remote worker who collaborates through a
VR interface. The remote worker also observes the polygon mesh of
the OOI in VR. This mesh is synchronized with the delivered pose
information, which helps the remote worker identify the pose of the
OOI existing at the local site. When the remote worker manipulates
and moves the polygon mesh on the VR side, the polygon mesh
augmented on the local worker’s screen reflects the manipulation.
Consequently, the polygon mesh of the OOI is used for the remote
worker to identify the OOI’s pose and for the local worker to be
told how to work on the OOI. Using the proposed XR collabora-
tion method, the remote worker can intuitively describe how to
perform the physical task, such as disassembly or assembly, by
demonstrating the task instruction on the polygon mesh.

3.2 Sharing ambient objects
The XR collaboration method proposed by Lee and Yoo [2021] does
not consider AOs at the local site. However, sharing information
about AOs can make collaboration more efficient by allowing a
remote worker to grasp the context of the local site quickly. Sharing
AO information requires three steps. The first step involves the 3D
reconstruction of the geometry of the AOs at the local site into
the point cloud (Figure 2(a)). The second step involves masking
the part corresponding to the OOI in the generated point cloud
(Figure 2(b)). The final step is to deliver the masked point cloud
to a remote worker (Figure 2(c)). This procedure is repeated for
each frame of depth data gathered from light detection and ranging
(LiDAR).

3.2.1 Point cloud reconstruction. A LiDARmeasures the distance to
an object by measuring the return time of a laser pulse. If the surface
of the hit object is very smooth (e.g., polished metal or mirror) and
total reflection occurs, the laser pulse may not return [Gao et al.
2021]. The measured distance information is obtained in the form
of a 2D depth map, using which we can estimate the geometry of
the local site. In the depth map, the intensity of each pixel refers to
the distance zc from the LiDAR to the object (subscript c implies
that its value is defined in the camera coordinate system). Using
the pinhole camera model, a point (xc ,yc , zc) in the real world can
be obtained from a pixel point (u,v) and distance zc in the depth
map [Szeliski 2010].

Web3D ’21, November 8–12, 2021, Pisa, Italy Yongjae Lee, Byounghyun Yoo, and Soo-Hong Lee

(a) Point cloud reconstruction

(b) Masking OOI

(c) Data transmission

Gather depth data
using LiDAR

3D model for OOIReconstruct
point cloud

Get z-buffer of
3D model renderer

Split point cloud
into fragments

Send fragments by
WebRTC

Leave points
where z = 1

Figure 2: Flowchart of sharing information about ambient
objects existing at the local site

3.2.2 Masking OOI. The point cloud represents the geometry of
the local site precisely. In general, a point cloud is sufficient to
represent the AOs of the local site because they have static or lim-
ited movement. Conversely, because the OOI is frequently moved
during a collaboration, capturing an OOI as a point cloud disturbs
the virtual space that a remote worker is experiencing, making it
difficult for the remote worker to understand the situation of the
local site.

Figure 3 chronologically shows the result of moving an OOI
while reconstructing the point cloud. In the figure, the tablet model
and valve flange model (the cyan colored virtual object in the Fig-
ure 3(a1)) in front of the male avatar are synchronized with the AR
device (held by the local worker) and the real valve flange (above
the workbench), respectively (Figure 4(a) depicts the local site con-
figuration corresponding to Figure 3). The OOI for collaboration is
the valve flange, and the AO to be reconstructed is the workbench.
Because the valve flange is located on the workbench, a point cloud
for the valve flange is also generated when the local worker scans
the workbench with the LiDAR which is embedded in the AR de-
vice. At this point, as the local worker moves the valve flange to the
left, afterimages of the flange remain along the path of movement
(Figure 3(a)). To prevent these afterimages, the reconstructed point
cloud is masked to remove the points in the OOI’s area. Conse-
quently, the masked area in the point cloud is left as a blank, and
the blank area is substituted by the flange model (Figure 3(b2)). In
Figure 3(b3) and (b4), the local worker moves the flange to the left,
but no additional afterimages occur as the points in the area of the
flange are masked. After moving the flange, the hole once occupied
by the flange model is filled with newly generated points.

Because an OOI and its 3D model are known through XR con-
tent, which points should be masked from a point cloud can be
identified. When comparing the rendered results of the point cloud
(Figure 4(b)) and the 3D model (Figure 4(c)), the pixel area repre-
senting the OOI (valve flange) is the same for each rendered result.
It means that when the points of the point cloud are projected onto
the screen, the point is a point to be masked if the pixel position
of the projected point is within the area of the rendered 3D model.
Whether a pixel is within the area of the rendered 3D model can

be determined using the z-buffer of the 3D model renderer. If the
z-value of a pixel is not 1 (typically in the OpenGL [The Khronos
Group Inc. 2019], the range of a z-value is [0.0, 1.0] and the default
depth clearing value is 1.0), it is within the area of the rendered
the 3D model. When the z-value equals 1, it indicates that no 3D
object occludes that pixel. Finally, the group of remaining points
after being masked is defined as follow:

Point = {p |Zp = 1} (1)

where Point denotes the group of remaining points after being
masked, p denotes a point in a point cloud, Z denotes the z-buffer
of a 3D model renderer, and Zp denotes the z-value corresponding
to p in the z-buffer.

We provided an example code of this section in appendix A.

3.2.3 Data transmission. During the transmission step, the masked
point cloud is delivered to other workers participating in the collab-
oration through a WebRTC data channel. The maximum buffer size
of the data channel is 16 KiB (16 384 B)1. However, this is generally
a tiny size to hold all points of a point cloud. Thus, a point cloud
must be split to fit the buffer size.

The position data consist of three 32-bit float values, and the
color data consist of three 8-bit unsigned int values. Thus, the size of
a single point is 15 B. Consequently, a fragment of a point cloud that
fits in the data channel buffer can contain up to ⌊16384/15⌋ = 1092
points. With this fact, we can derive the number of fragments gener-
ated from a point cloud. For example, a depth map with a resolution
of 192 × 256 = 49152 requires ⌈49152/1092⌉ = 46 fragments to be
delivered through the data channel.

In general, point cloud data are managed separately as position
data and color data for efficient memory management. When the
point cloud data are divided according to the buffer size of the data
channel in the order stored in the memory, the position data and
color data for one point are separated into different packets. Ren-
dering a single point requires both position and color data. In other
words, packets containing position data and packets containing
color data are dependent on each other. Packets can be delivered out
of order as they pass through the network (Figure 5(a)). Therefore,
a remote worker may receive other packets between two dependent
packets. Because both dependent packets must be available, the
point cannot be rendered until the receipt of the second packet.

Figure 5(b) presents a structure dividing the point cloud data
such that there is no dependence between packets. The position
and color data that comprise one point are contained in the same
packet. Consequently, the relevant portion of the point cloud can
be rendered as soon as each packet arrives.

4 IMPLEMENTATION
We implemented a prototype to demonstrate the proposed XR col-
laboration concept. Figure 6 shows the architecture of the prototype
system. The WXR Library is a JavaScript library that controls and
renders XR content. The WXR Library was improved based on
A-Frame [Marcos et al. 2020] from a version introduced in our
previous study [Lee and Yoo 2021]. The XR content loader down-
loads static resources, such as XR scenes or textures, from the WXR
1MDN. https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Using_data_
channels#concerns_with_large_messages, last accessed on 07/30/21

https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Using_data_channels#concerns_with_large_messages
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Using_data_channels#concerns_with_large_messages

Sharing Ambient Objects Using Real-time Point Cloud Streaming in Web-based XR Remote Collaboration Web3D ’21, November 8–12, 2021, Pisa, Italy

(a1) (a2) (a3) (a4)

(a)

(b)

LiDAR
Sensor

Valve
flange

Hole formed
by masking

Afterimages of
valve flange

Hole is being
filled

(b1) (b2) (b3) (b4)

Figure 3: Reconstruction result comparison (a) without masking and (b) with masking. The layout of subfigures is chronolog-
ical from left to right.

Workbench

Area where z!=1LiDAR Sensor
(iPad Pro)

(a) (b) (c)

Worker Area representing
valve flange

Valve Flange

Figure 4: (a) Configuration of the local site, (b) rendered re-
sult of the point cloud, and (c) rendered result of 3Dmodel of
the ball valve flange. Note that the holes on the flange were
blocked in the 3D model for a better masking result.

workspace server. The event handler applies interaction events (rep-
resented as Event Data in Figure 6) to the XR scene and transports
them from and to the server for synchronization. The point cloud
receiver adds the point cloud delivered through WebRTC to the XR
scene. Because the data size of a point cloud is generally big, con-
trolling them loads the server. Thus, we opted to use WebRTC for
streaming point cloud data. On the contrary, we chose WebSocket
for sending Event Data because the data size of an Event Data is
generally tiny, and the logic for handling some Event Data (e.g.,
joining in or exiting from a collaboration session) is executed in
the server.

We created a browser application (WXR Browser) to use the
object tracking function and LiDAR functionality in the tablet. The
AR engine used in the prototype is ARKit, which provides pose
information of the OOI obtained from the object tracking function
and a depth map collected from the LiDAR embedded in the tablet.
The pose information of the OOI was applied to the 3D model of
the OOI in the XR scene via the event handler. The point cloud
generator reconstructed a point cloud using depth data from the
AR engine and masked the points in the corresponding area of the
OOI. Other than that the WXR library rendered the XR scene on the

Packets

P1

P2

P3

P4

P5

P6

P7

P8

Peer-to-peer network
P1

P2

P3

P4

P5

P6

P7

P8

P1

P2

P3

P4

P1

P2

P3

P4

P5

P6

P7

P8

C1

C2

C3

C4

C5

C6

C7

C8

C1

C2

C3

C4

C5

C6

C7

C8

C1

C2

C3

C4

C5

C6

C7

C8

C1

C2

C3

C4

C5

C6

C7

C8

pk_1pk_2pk_3pk_4 pk_2 pk_3 pk_4 pk_1

Sender
(Local Worker)

Receiver
(Remote Expert)

P5

P6

P7

P8Data Channel (WebRTC)

(a) When the point cloud data are divided into packets in the order of memory,
dependency occurs among packets.

Data Channel (WebRTC)

Peer-to-peer network
P1

C1

P2

C2

P3

C3

P4

C4

P1

C1

P2

C2

P5

C5

P6

C6

P7

C7

P8

C8

P5

C5

P6

C6

pk_1pk_2pk_3pk_4 pk_2 pk_3 pk_4 pk_1

P1

P2

P3

P4

P5

P6

P7

P8

C1

C2

C3

C4

C5

C6

C7

C8

P1

P2

P7

P8

P5

P6

P3

P4

C1

C2

C7

C8

C5

C6

C3

C4

P3

C3

P4

C4

P7

C7

P8

C8

Packets

Sender
(Local Worker)

Receiver
(Remote Expert)

(b) Dependencies among packets can be eliminated by placing both the position and
color data of a point in the same packet.

Figure 5: Dependency among packets. ‘P1’ denotes position
data of the first point in the point cloud. ‘C1’ denotes color
data of the first point. ‘pk_n’ denotes the n th sent packet
containing position or color data.

user’s screen, the point cloud generator also performed off-screen
rendering only on the OOI to obtain its z-buffer. In the point cloud
streamer, the masked point cloud was divided by the buffer size of
the data channel and passed to other users connected by WebRTC.
The process of point-cloud reconstruction could be switched on
and off via a separate user interface.

Figure 1 presents the configuration of the collaboration. The
local worker with the AR device reconstructs the point cloud of

Web3D ’21, November 8–12, 2021, Pisa, Italy Yongjae Lee, Byounghyun Yoo, and Soo-Hong Lee

Web BrowserWXR Browser WXR Workspace Server

Content Provider WXR Library

Point Cloud Receiver

Local Worker (Tablet)
Remote Expert

(PC, Tethered HMD, Untethered HMD*)

XR Content Loader

Event HandlerWebRTC Signaling

Event Data Router

WXR Library

Event Handler

Point Cloud
Streamer

Point Cloud
Generator

AR Engine

XR Content Loader

XR
 S

ce
ne

Communication Channel Types

Event Data (WebSocket)

XR Content (HTTP)

Point Cloud (WebRTC)

Signaling (WebSocket)

XR
 S

ce
ne

Point Cloud

Pose of OOI

Scene
Event

Static
Content

Scene
Event

Static
Content

Point
Cloud

Web Browser

WXR Library

Point Cloud Receiver

Third-person viewer (PC)

XR Content Loader

Event Handler

XR
 S

ce
ne

Scene
Event

Static
Content

Point
Cloud

Depth Map

D
is

pl
ay

D
is

pl
ay

R
en

de
re

d
fra

m
e

R
en

de
re

d
fra

m
e

D
is

pl
ay

R
en

de
re

d
fra

m
e

Figure 6: System architecture
* An untethered HMD, such as the Oculus Quest 2, can be used as a terminal computer. However, in our prototype implemen-
tation, we used the Oculus Quest 2 by tethering to a PC for high rendering performance. By conducting several tests, we found
that the Oculus Quest 2 must be tethered to render over 100 thousand points of a point cloud.

(1)

(a) (left) Third-person view of the VR. (center) The remote expert demonstrates ball
valve locking. The display wall presents the scene being viewed by the remote expert.
(right) Screen viewed by the local worker.

(2)

(b) (left) Third-person view of the VR. (center) Local worker performs valve locking.
(right) Screen viewed by the local worker.

Figure 7: (a) Work demonstration of remote expert, and (b)
the local worker following the remote expert

the AO around him and recognizes the ball valve (Figure 1(c1)),
which is the OOI. The remote expert on the VR side can understand
the situation of the local site by looking at the 3D model of the
OOI and the point cloud of the AO, and deliver task instructions to

the local worker. The collaboration process is observed by a third
person. The AR device used by the local worker is iPad Pro 12.9-
inch (4th generation), and the VR device used by the remote expert
is Oculus Quest 2. The Oculus Quest 2 was tethered via Firefox
browser on a PC (AMD Ryzen 9 3900X 12-Core 3.8 GHz CPU, 64 GB
DDR4 RAM, NVIDIA Quadro RTX 5000 GPU) with a Windows 10
operating system using Oculus Air Link2. The third person used
Chrome Browser on a laptop (Intel Core i9 8950HK 2.9 GHz CPU,
32 GB DDR4 RAM, Intel UHD Graphics 630 GPU) configured with
a Windows 10 operating system. The server program was written
using Node.js with MariaDB and run on a PC (Intel Xeon E5-2699
v4 2.2 GHz CPU, 64 GB DDR4 RAM) with a Windows 10 operating
system.

In the reconstruction process of the point cloud of the AO, the
points collected around the ball valve were masked, and the space
of the masked points was occupied by the 3D model of the ball
valve. The remote expert accumulated the point cloud delivered
at each frame, as shown in Figure 1(b). The accumulated point
cloud formed the background of the virtual space that the remote
expert was experiencing. Once the reconstruction was completed,
the point cloud surrounded the 3D model of the ball valve, allowing
the remote expert in VR to grasp the situation of the local site.

2Facebook. https://support.oculus.com/link/, last accessed on 07/30/21

https://support.oculus.com/link/

Sharing Ambient Objects Using Real-time Point Cloud Streaming in Web-based XR Remote Collaboration Web3D ’21, November 8–12, 2021, Pisa, Italy

(a) Third-person view from a web browser (Chrome)

(b) Local worker watching the remote ex-
pert’s gesture through the AR device

(c) Screen of the AR device of the local
worker

Figure 8: Identifying the location of the spanner throughVR
used by the remote expert.

The remote expert demonstrated a task in three steps: locking
the ball valve, disassembling the flange, and pulling the ball out of
the valve. At each step, the remote expert directly showed the local
worker how to perform the task using the 3D model of the ball
valve part (Figure 7(a)(center)). The 3D model was augmented on
the local worker’s AR device screen (Figure 7(a)(right)). The local
worker could intuitively understand the remote expert’s instruction
by viewing the 3D model’s movement, and perform the task by
manipulating the handle based on his understanding of the task
instructions (Figure 7(b)(center)). The AR device carried by the
local worker recognized the movement of the handle using an
object tracking function and synchronized the pose of the handle
to the corresponding 3D model (Figure 7(b)(right)). When the local
worker rotated the handle, the area (Figure 7(a)(1)), which was
initially not reconstructed because of the masking, was exposed
to the LiDAR and filled with a newly reconstructed point cloud
(Figure 7(b)(2)). In the process of disassembling the flange, a spanner
was required to disassemble a set of bolt nuts that combined the ball
valve flanges. The remote expert was able to find the spanner in the
background consisting of the reconstructed point cloud and inform
the local worker of its location (Figure 8). A complete demonstration
video of the prototype is available at the following link: https:
//bit.ly/3yyLR1Q.

5 CONCLUSION
In this paper, we introduced a new XR collaboration concept that
separates OOIs and AOs and conveys the situation of a local site in
an appropriate manner for each object. This collaboration method
uses a LiDAR to reconstruct the point cloud on the fly only for

the AOs. Through this, a local worker can manipulate OOIs while
sharing their AOs. This method does not require installing a com-
plex sensor system to communicate the situation at the local site.
Moreover, this method makes it possible for XR collaboration to
proceed in any space. Through the demonstration, we observed
that it was possible for the remote expert to recognize AOs (e.g.,
the spanner) in the local site and induce the local worker to use it.
In addition, the proposed method is practical because it does not
create virtual replicas for all objects in the workspace, thus saving
preparation time for collaboration.

The limitation of this research is that the proposed system is not
fully qualified against quantitative user surveys due to the lasting
COVID-19 pandemic. Thus, our future work involves conducting a
user evaluation of the proposed method to quantitatively verify the
practicality and efficiency of our XR collaboration concept against
traditional collaboration methods, such as video conferencing.

ACKNOWLEDGMENTS
This work was supported by the Industrial Technology Innovation
Program (20012462) funded by the Ministry of Trade, Industry
& Energy (MOTIE, Korea), the National Research Foundation of
Korea (NRF) grant (NRF-2021R1A2C2093065) funded by the Korea
government (MSIT) and the KIST under the Institutional Program
(Grant No. 2V09004).

REFERENCES
Ismo Alakärppä, Elisa Jaakkola, Jani Väyrynen, and Jonna Häkkilä. 2017. Using Nature

Elements in Mobile AR for Education with Children. In Proceedings of the 19th
International Conference on Human-Computer Interaction with Mobile Devices and
Services (MobileHCI ’17). Association for Computing Machinery, New York, NY,
USA. https://doi.org/10.1145/3098279.3098547

Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lempit-
sky. 2020. Neural Point-Based Graphics. In Computer Vision — ECCV 2020, Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer Inter-
national Publishing, Cham, 696–712. https://doi.org/10.1007/978-3-030-58542-6_42

Apple Inc. 2017. ARKit. Retrieved July 30, 2021 from https://developer.apple.com/
augmented-reality/

Huidong Bai, Prasanth Sasikumar, Jing Yang, and Mark Billinghurst. 2020. A User
Study on Mixed Reality Remote Collaboration with Eye Gaze and Hand Gesture
Sharing. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3313831.3376550

Peng Dai, Yinda Zhang, Zhuwen Li, Shuaicheng Liu, and Bing Zeng. 2020. Neural
Point Cloud Rendering via Multi-Plane Projection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 7830–7839. https:
//arxiv.org/abs/1912.04645

Arindam Dey, Thammathip Piumsomboon, Youngho Lee, and Mark Billinghurst. 2017.
Effects of Sharing Physiological States of Players in a Collaborative Virtual Reality
Gameplay. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (CHI ’17). Association for ComputingMachinery, New York, NY, USA, 4045–
4056. https://doi.org/10.1145/3025453.3026028

Omid Fakourfar, Kevin Ta, Richard Tang, Scott Bateman, and Anthony Tang. 2016.
Stabilized Annotations for Mobile Remote Assistance. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems (CHI ’16). Association for
Computing Machinery, New York, NY, USA, 1548–1560. https://doi.org/10.1145/
2858036.2858171

Lei Gao, Huidong Bai, Mark Billinghurst, and Robert W Lindeman. 2020. User Be-
haviour Analysis of Mixed Reality Remote Collaboration with a Hybrid View
Interface. In 32nd Australian Conference on Human-Computer Interaction (OzCHI
’20). Association for Computing Machinery, New York, NY, USA, 629–638. https:
//doi.org/10.1145/3441000.3441038

Lei Gao, Huidong Bai, Weiping He, Mark Billinghurst, and Robert W Lindeman. 2018.
Real-Time Visual Representations for Mobile Mixed Reality Remote Collaboration.
In SIGGRAPH Asia 2018 Virtual & Augmented Reality (SA ’18). Association for
Computing Machinery, New York, New York, USA, 1–2. https://doi.org/10.1145/
3275495.3275515

Lei Gao, Huidong Bai, Rob Lindeman, andMark Billinghurst. 2017. Static Local Environ-
ment Capturing and Sharing for MR Remote Collaboration. In SIGGRAPH Asia 2017

https://bit.ly/3yyLR1Q
https://bit.ly/3yyLR1Q
https://doi.org/10.1145/3098279.3098547
https://doi.org/10.1007/978-3-030-58542-6_42
https://developer.apple.com/augmented-reality/
https://developer.apple.com/augmented-reality/
https://doi.org/10.1145/3313831.3376550
https://arxiv.org/abs/1912.04645
https://arxiv.org/abs/1912.04645
https://doi.org/10.1145/3025453.3026028
https://doi.org/10.1145/2858036.2858171
https://doi.org/10.1145/2858036.2858171
https://doi.org/10.1145/3441000.3441038
https://doi.org/10.1145/3441000.3441038
https://doi.org/10.1145/3275495.3275515
https://doi.org/10.1145/3275495.3275515

Web3D ’21, November 8–12, 2021, Pisa, Italy Yongjae Lee, Byounghyun Yoo, and Soo-Hong Lee

Mobile Graphics & Interactive Applications (SA ’17). Association for Computing Ma-
chinery, New York, New York, USA, 1–6. https://doi.org/10.1145/3132787.3139204

Rui Gao, Jisun Park, Xiaohang Hu, Seungjun Yang, and Kyungeun Cho. 2021. Reflective
Noise Filtering of Large-Scale Point Cloud Using Multi-Position LiDAR Sensing
Data. Remote Sensing 13, 16 (2021). https://doi.org/10.3390/rs13163058

Steffen Gauglitz, Benjamin Nuernberger, Matthew Turk, and Tobias Höllerer. 2014.
World-Stabilized Annotations and Virtual Scene Navigation for Remote Collabora-
tion. In Proceedings of the 27th Annual ACM Symposium on User Interface Software
and Technology (UIST ’14). Association for Computing Machinery, New York, New
York, USA, 449–459. https://doi.org/10.1145/2642918.2647372

Jeronimo Gustavo Grandi, Henrique Galvan Debarba, and Anderson Maciel. 2019.
Characterizing Asymmetric Collaborative Interactions in Virtual and Augmented
Realities. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
IEEE, 127–135. https://doi.org/10.1109/VR.2019.8798080

Seungyeon Huh, Shapna Muralidharan, Heedong Ko, and Byounghyun Yoo. 2019.
XR Collaboration Architecture Based on Decentralized Web. In The 24th Interna-
tional Conference on 3D Web Technology (Web3D ’19). Association for Computing
Machinery, New York, NY, USA, 1–9. https://doi.org/10.1145/3329714.3338137

Andrew Irlitti, Thammathip Piumsomboon, Daniel Jackson, and Bruce H Thomas.
2019. Conveying spatial awareness cues in xR collaborations. IEEE Transactions
on Visualization and Computer Graphics 25, 11 (nov 2019), 3178–3189. https:
//doi.org/10.1109/TVCG.2019.2932173

Seungwon Kim, Gun Lee, Weidong Huang, Hayun Kim, Woontack Woo, and Mark
Billinghurst. 2019. Evaluating the Combination of Visual Communication Cues
for HMD-Based Mixed Reality Remote Collaboration. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (CHI ’19). Association for
Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.
3300403

GunA Lee, Theophilus Teo, Seungwon Kim, andMark Billinghurst. 2017. Sharedsphere:
MR Collaboration through Shared Live Panorama. In SIGGRAPH Asia 2017 Emerging
Technologies (SA ’17). Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3132818.3132827

Yongjae Lee, Changhyun Moon, Heedong Ko, Soo-Hong Lee, and Byounghyun Yoo.
2020. Unified Representation for XR Content and Its Rendering Method. In The
25th International Conference on 3D Web Technology (Web3D ’20). Association for
Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/3424616.
3424695

Yongjae Lee and Byounghyun Yoo. 2021. XR collaboration beyond virtual reality: work
in the real world. Journal of Computational Design and Engineering 8, 2 (2021),
756–772. https://doi.org/10.1093/jcde/qwab012

David Lindlbauer and Andy DWilson. 2018. Remixed Reality: Manipulating Space and
Time in Augmented Reality. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3173703

Diego Marcos, Don McCurdy, and Kevin Ngo. 2020. A-Frame. Retrieved July 30, 2021
from https://aframe.io

Benjamin Nuernberger, Kuo-Chin Lien, Tobias Hollerer, and Matthew Turk. 2016.
Anchoring 2D gesture annotations in augmented reality. In 2016 IEEE Virtual
Reality (VR). IEEE, 247–248. https://doi.org/10.1109/VR.2016.7504746

Thammathip Piumsomboon, Arindam Day, Barrett Ens, Youngho Lee, Gun Lee, and
Mark Billinghurst. 2017. Exploring Enhancements for Remote Mixed Reality Col-
laboration. In SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applications
(SA ’17). Association for Computing Machinery, New York, New York, USA, 1–5.
https://doi.org/10.1145/3132787.3139200

Lev Poretski, Joel Lanir, and Ofer Arazy. 2018. Normative Tensions in Shared Aug-
mented Reality. Proceedings of the ACM on Human-Computer Interaction 2, CSCW
(nov 2018), 1–22. https://doi.org/10.1145/3274411

Daeil Seo, Byounghyun Yoo, and Heedong Ko. 2017. Webized 3D Content Streaming
System for Autostereoscopic 3D Displays. In Proceedings of the 22nd International
Conference on 3D Web Technology (Web3D ’17). Association for Computing Machin-
ery, New York, NY, USA. https://doi.org/10.1145/3055624.3075940

Daeil Seo, Byounghyun Yoo, and Heedong Ko. 2018. Webizing Collaborative Interaction
Space for Cross Reality with Various Human Interface Devices. In Proceedings of the
23rd International ACM Conference on 3D Web Technology (Web3D ’18). Association
for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/
3208806.3208808

Daeil Seo, Byounghyun E. Yoo, and Heedong Ko. 2016. Webizing Mixed Reality for
Cooperative Augmentation of Life Experience. In Proceedings of the 19th ACM Con-
ference on Computer Supported Cooperative Work and Social Computing Companion
(CSCW ’16 Companion). Association for Computing Machinery, New York, New
York, USA, 401–404. https://doi.org/10.1145/2818052.2869078

Richard Szeliski. 2010. Computer vision: algorithms and applications. Springer Science
& Business Media. https://szeliski.org/Book/

Theophilus Teo, Louise Lawrence, Gun A Lee, Mark Billinghurst, and Matt Adcock.
2019. Mixed Reality Remote Collaboration Combining 360 Video and 3D Recon-
struction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/3290605.3300431

Theophilus Teo, Mitchell Norman, Gun A Lee, Mark Billinghurst, and Matt Adcock.
2020. Exploring interaction techniques for 360 panoramas inside a 3D reconstructed
scene for mixed reality remote collaboration. Journal on Multimodal User Interfaces
14, 4 (2020), 373–385. https://doi.org/10.1007/s12193-020-00343-x

The Khronos Group Inc. 2019. The OpenGL Graphics System: A Specification (Version
4.6 (Core Profile) - October 22, 2019). Retrieved September 26, 2021 from https:
//www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf

TopVIEW. 2021. Interactive 3D Virtual Tour Specialists. Retrieved July 11, 2021 from
https://topview.co.nz/

PengWang, Xiaoliang Bai, Mark Billinghurst, Shusheng Zhang, Sili Wei, Guangyao Xu,
Weiping He, Xiangyu Zhang, and Jie Zhang. 2020. 3DGAM: using 3D gesture and
CAD models for training on mixed reality remote collaboration. Multimedia Tools
and Applications (sep 2020), 1–26. https://doi.org/10.1007/s11042-020-09731-7

Wikitude GmbH. 2008. Wikitude. Retrieved September 25, 2021 from https://www.
wikitude.com

https://doi.org/10.1145/3132787.3139204
https://doi.org/10.3390/rs13163058
https://doi.org/10.1145/2642918.2647372
https://doi.org/10.1109/VR.2019.8798080
https://doi.org/10.1145/3329714.3338137
https://doi.org/10.1109/TVCG.2019.2932173
https://doi.org/10.1109/TVCG.2019.2932173
https://doi.org/10.1145/3290605.3300403
https://doi.org/10.1145/3290605.3300403
https://doi.org/10.1145/3132818.3132827
https://doi.org/10.1145/3424616.3424695
https://doi.org/10.1145/3424616.3424695
https://doi.org/10.1093/jcde/qwab012
https://doi.org/10.1145/3173574.3173703
https://aframe.io
https://doi.org/10.1109/VR.2016.7504746
https://doi.org/10.1145/3132787.3139200
https://doi.org/10.1145/3274411
https://doi.org/10.1145/3055624.3075940
https://doi.org/10.1145/3208806.3208808
https://doi.org/10.1145/3208806.3208808
https://doi.org/10.1145/2818052.2869078
https://szeliski.org/Book/
https://doi.org/10.1145/3290605.3300431
https://doi.org/10.1007/s12193-020-00343-x
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://topview.co.nz/
https://doi.org/10.1007/s11042-020-09731-7
https://www.wikitude.com
https://www.wikitude.com

Sharing Ambient Objects Using Real-time Point Cloud Streaming in Web-based XR Remote Collaboration Web3D ’21, November 8–12, 2021, Pisa, Italy

A CODE EXAMPLESharing Ambient Objects Using Real-time Point Cloud Streaming in Web-based XR Remote Collaboration Web3D ’21, November 8–12, 2021, Pisa, Italy

1 // This code is written in Metal.
2 // This function returns a point having 3D position and color, using

a depth map from LiDAR and the z-buffer of a 3D object renderer.
The determination of if the point is representing OOI is included.
This function executed for each pixel of the depth map in
parallel.

3 kernel void compute_world_point_and_color(
4 device const int* pixelWidth,
5 device const int* colorWidth,
6 device const int* depthTextureWidth,
7 device const simd_float2* depthToTextureRatio,
8 device const simd_float4x4 *perspective,
9 device const float* depthTexture,
10 device const simd_float2* dpethToImageRatio,
11 device const float* depth,
12 device const int* color,
13 device simd_float3* worldPoint,
14 device int* sampledColor,
15 device const simd_float3x3* cameraIntrinsicsInversed,
16 device const simd_float4x4* cameraTransform,
17 uint index [[thread_position_in_grid]])
18 {
19 // Because the data structure of the depth map in memory is a

1-dimensional array, we need to calculate u, v index of the
depth map.

20 int ix = index % *pixelWidth;
21 int iy = index / *pixelWidth;
22
23 // We need to scale u, v index up to fit the image plane

resolution. Practically, the resolution of the depth map is
different from the image plane resolution. It is relatively
small.

24 const auto cameraPlanePoint = simd_float3(ix *

dpethToImageRatio->x, iy * dpethToImageRatio->y, 1);
25
26 // Calculate the world position of a point. Practically, because

the axis directions of the image coordinate are different
from those of the world coordinate, we need to multiply the
flipYZ matrix that inverses the direction of the Y and Z axis.

27 const auto localPoint = *cameraIntrinsicsInversed *

cameraPlanePoint * depth[index];
28 float4 _wp = *cameraTransform * flipYZ * simd_float4(localPoint,

1);
29 _wp /= _wp.w;
30
31
32 // Find the z-value of the pixel corresponding to the point.
33 int depthTextureIndex = int(ix * depthToTextureRatio->x) + int(iy

* depthToTextureRatio->y) * *depthTextureWidth;
34 auto modelDepth = depthTexture[depthTextureIndex];
35
36 // Test if the z-value from the z-buffer of a 3D object is 1. If

it is not 1, we discard the reconstructed point.
37 if (modelDepth != 1) {
38 _wp = float4(0,0,0,0);
39 }
40
41 // Color sampling for the reconstructed point.
42 int colorIndex = (int)cameraPlanePoint.x +

(int)cameraPlanePoint.y * *colorWidth;
43
44 worldPoint[index] = _wp.xyz;
45 sampledColor[index] = color[colorIndex];
46 }

Listing 1: Example code of reconstructing point cloud and
masking it, in Metal

	Abstract
	1 Introduction
	2 Related Work
	2.1 XR collaboration
	2.2 Sharing physical environment

	3 Methodology
	3.1 XR collaboration
	3.2 Sharing ambient objects

	4 Implementation
	5 Conclusion
	Acknowledgments
	References
	A Code Example

